Question #222267

Find the eigen value and eigen function of homogeneous integral equation

y(x)= 𝜆\intK(x,t)y(t)dt where K(x,t)= sinx sin(t-1) -𝜋<=x<=t

sint sin(x-1) t<=x<= 𝜋




1
Expert's answer
2021-09-07T15:36:56-0400

Answer:-

This question is incomplete but we can take y(x)=λ01ex+1y(t)dty(x)=\lambda \int_{0}^{1} e^{x+1} y(t) d t to understand the problem.

The given equation can be written as

y(x)=λex01ety(t)dt(i)y(x)=\lambda e^{x} \int_{0}^{1} e^{t} y(t) d t \ldots(\mathrm{i})

Assume that C=01ety(t)dt(ii)\quad C=\int_{0}^{1} e^{t} y(t) d t \ldots(\mathrm{ii})

Then, from Eq. (i), we have u(x)=λCex..(iii)u(x)=\lambda C e^{x} \ldots . . (iii)

y(t)=λCet\Rightarrow y(t)=\lambda C e^{t}

Putting this value in eq. (ii), we get

C=01et(λCet)dt=λC[e2t2]01C=λC2(e21)C[1λ2](e21)=0\begin{aligned} &C=\int_{0}^{1} e^{t}\left(\lambda C e^{t}\right) d t=\lambda C\left[\frac{e^{2 t}}{2}\right]_{0}^{1} \\ &\Rightarrow C=\frac{\lambda C}{2}\left(e^{2}-1\right) \Rightarrow C\left[1-\frac{\lambda}{2}\right]\left(e^{2}-1\right)=0 \end{aligned}

If C=0\mathrm{C}=0 , then Eq. (iii) gives y(x)=0{y}({x})=0 .

We, therefore assume that for non-zero solution of Eq. (i).

If C0C \neq 0 , then Eq. (iii) gives

1λ2(e21)=01-\frac{\lambda}{2}\left(e^{2}-1\right)=0

λ=2e21\Rightarrow \lambda=\frac{2}{e^{2}-1}

Which is an eigen value of Eq. (i).

To find the corresponding eigen function, putting the value of λ\lambda in Eq. (iii), we get

y(x)=2Ce21exy(x)=\frac{2 C}{e^{2}-1} \cdot e^{x}

The eigen function is ex.\mathrm{e}^{{x}}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS