By method variation of parameters solve the ODE(D^2+4)y=2 cosec2x?
Solution;
The general solution of the equation is given by;
y=yp+yh
The equation has an auxiliary equation of the form;
P(m)=m2+4=0
m2=-4
m=-2i and m=2i
Hence the homogenous solutions is;
yh=C1cos(2x)+C2sin(2x)
Here;
y1=cos(2x)
y2=sin(2x)
X=2cosec(2x)
"W=\\begin{vmatrix}\n cos(2x) & sin(2x)\\\\\n -2sin(2x) & 2cos(2x)\n\\end{vmatrix}"
det(W)=2(cos2(2x)+sin2(2x))=2(1)=2"\\ne0"
For the particular solution;
Let yp=uy1+vy2
"u=-\\int\\frac{y_2X}{W}dx"
"u=-\\int\\frac{sin(2x)2cosec(2x)}{2}" ="-\\int1dx"
u=-x
"v=\\int\\frac{y_1X}{W}dx"
"v=\\int\\frac{cos(2x)2cosec(2x)}{2}dx" ="\\int\\frac{cos(2x)}{sin(2x)}dx" ="\\frac12ln(sin(2x))"
Hence;
yp=-xcos(2x)+"\\frac12"ln(sin(2x))sin(2x)
Hence the required solution is ;
y=C1cos(2x)+C2sin(2x)-xcos(2x)+"\\frac12"sin(2x)ln(sin(2x))
Comments
Leave a comment