Answer to Question #221430 in Differential Equations for Suhaib

Question #221430

Solve π‘₯2𝑦``βˆ’3π‘₯𝑦`+5𝑦=π‘₯2sin(𝑙𝑛π‘₯) ;𝑦(1)=1,𝑦`(1)=0


1
Expert's answer
2021-07-29T16:47:40-0400

Solution;

This is a Cauchy Euler differential equation;

Substitute "x=e^t" hence t=ln(x)

"\\frac{dy}{dx}=\\frac{dy}{dt}\\frac{dt}{dx}=e^{-t}\\frac{dy}{dt}"

"\\frac{d^2y}{dx^2}=\\frac{d}{dx}(e^{-t}\\frac{dy}{dt})=-e^{-2t}\\frac{dy}{dt}+e^{-2t}\\frac{d^2y}{dt^2}"

Substitute in the given equation;

"e^{2t}(-e^{-2t}\\frac{dy}{dt}+e^{-2t}\\frac{d^2y}{dt^2})-3e^t(e^{-t}\\frac{dy}{dt})+5y=e^{2t}sin(t)"

Simplify;

"\\frac{d^2y}{dt}-4\\frac{dy}{dt}+5y=e^{2t}sin(t)"

Above equation is homogeneous;

The characteristic equation ;

"r^2+4r+5=(r-2)^2+1"

The roots are;

r=2+i and r=2-i

The homogeneous solution;

"y_h=e^{2t}(C_1cos(t)+C_2sin(t))"

The particular solution;

"y_p=t.(e^{2t}Acos t+e^{2t}Bsint)"

By distribution;

"y_p=te^{2t}(Acost+Bsint)"

Differentiating;

"y'_p=(2te^{2t}+e^{2t})(Acost+Bsint)+te^{2t}(-Asint+Bcost)"

Differentiate ;"y''_p=(4te^{2t}+4e^{2t})(Acost+Bsint)+(4te^{2t}+2e^{2t})(-Asint+Bcost)+te^{2t}(-Acost-Bsint)"

Substitute into the transformed equation and simplify;

"e^{2t}(-2Asint +2Bcost)=e^{2t}sint"

Equate the coefficients;

-2A=1;A=-0.5

B=0

Thefore;

"y_p=-\\frac12te^{2t}cost"

Since ;

"y=y_h+y_p"

The general solution of the equation is ;

"y=e^{2t}(C_1cost+C_2sint)-\\frac12te^{2t}cost"

Write in terms of x by replacing x=et;

"y=x^2(C_1cos(lnx)+C_2sin(lnx))-\\frac12x^2ln(x)cos(lnx)"

Apply the initial conditions to find the constants;

y(1)=1

1="C_1"

"y=x^2cos(lnx)+C_2x^2sin(lnx)-\\frac12x^2lnxcos(lnx)"

"y''=C_2(x^2sin(lnx)-\\frac{x^2lnxcos(lnx)}{2})+x^2cos(lnx)"

Use the condition;

y'(1)=0

0=C2(0+0)+0

C2=0

Hence;"y=x^2cos(lnx)-\\frac12x^2ln(x)cos(lnx)"








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment