Solve the following differential equation by using separation of variables method: dp/dt =(1+p^2)cos(t)/psin(t)
"\\frac{dp}{dt}=\\frac{(1+p^2)cost}{psint}\\\\\\text{Cross multiplying, we have,}\\\\dp(psint)=(1+p^2)costdt\\\\\\implies\\frac{p}{1+p^2}dp=\\frac{cost}{sint}dt\\\\\\text{Integrating both sides, we have }\\\\\\frac{1}{2}\\ln(1+p^2)=\\ln sint+\\ln c\\\\\\text{Taking the exponential of both sides, we have}\\\\(1+p^2)^{\\frac{1}{2}}=csint"
Comments
Leave a comment