The corresponding homogeneous differential equation
Characteristic equation
"r_1=-1-i\\sqrt{3}, r_2=-1+i\\sqrt{3}"
The general solution of the homogeneous differential equation is
Find a particular solution of the nonhomogeneous differential equation
"y_p'=2Ae^{2x}\\cos(3x)-3Ae^{2x}\\sin(3x)"
"+2Be^{2x}\\sin(3x)+3Be^{2x}\\cos(3x)"
"-9Ae^{2x}\\cos(3x)+4Be^{2x}\\sin(3x)"
"+12Be^{2x}\\cos(3x)-9Be^{2x}\\sin(3x)"
Substitute
"+12Be^{2x}\\cos(3x)-5Be^{2x}\\sin(3x)"
"+4Ae^{2x}\\cos(3x)-6Ae^{2x}\\sin(3x)"
"+4Be^{2x}\\sin(3x)+6Be^{2x}\\cos(3x)"
"+4Ae^{2x}\\cos(3x)+4Be^{2x}\\sin(3x)"
"=111e^{2x}\\cos(3x)"
"e^{2x}\\cos(3x):3A+18B=111"
"e^{2x}\\sin(3x):-18A+3B=0"
"A=1, B=6"
The general solution of the nonhomogeneous differential equation is
"y=C_1e^{-x}\\cos(\\sqrt{3}x)+C_2e^{-x}\\sin(\\sqrt{3}x)"
"+e^{2x}\\cos(3x)+6e^{2x}\\sin(3x)"
Comments
Leave a comment