dr/dΩ+tanΩ=cos2Ω
Solution;
"\\frac{dr}{d\\Omega}" =cos2"\\Omega" -tan"\\Omega"
dr=(cos2"\\Omega" -tan"\\Omega" )d"\\Omega"
Integrate both sides;
"\\int{dr}=\\int{(cos2\\Omega-tan\\Omega)}d\\Omega"
"\\int{dr}=\\int{cos2\\Omega}d\\Omega-\\int{tan\\Omega}d\\Omega"
"\\int dr=\\int{cos2\\Omega}d\\Omega-\\int{\\frac{sin\\Omega}{cos\\Omega}}d\\Omega"
But for the integration of;
"\\int{\\frac{sin\\Omega}{cos\\Omega}}"
take u=cos"\\Omega" ;"\\frac{du}{d\\Omega}=-sin\\Omega"
"d\\Omega=\\frac{-1}{sin\\Omega}du"
Replace back
"\\int{\\frac{-1}{u}}du=-ln(u)=-ln(cos\\Omega)" =ln"(sec\\Omega)"
Hence,
"r=\\frac{sin2\\Omega}{2}-ln(|sec\\Omega|)+C"
Comments
Leave a comment