Question #221686

Solve

dydx\frac{dy}{dx} =(x+2y-3)/(2x+y-3)




1
Expert's answer
2021-08-11T12:51:17-0400

Our standard toolkit for DE's cannot be used. However, we can perform a transformation to remove the constants from the linear numerator and denominator.

Consider the simultaneous equations

{x+2y3=02x+y3=0    {x=1y=1\begin{cases} x+2y-3=0 \\ 2x+y-3=0 \end{cases} \implies \begin{cases} x=1\\ y=1 \end{cases}

As a result we perform two linear transformations:

{u=x1v=y1    {x=u+1y=v+1    {dxdu=1dydv=1\begin{cases} u=x-1 \\ v=y-1 \end{cases} \implies \begin{cases} x=u+1\\ y=v+1 \end{cases} \implies \begin{cases} \frac{dx}{du}=1\\ \frac{dy}{dv}=1 \end{cases}

And if we substitute into the DE we get

dydx=(u+1)+2(v+1)32(u+1)+2(v+1)3dydx=u+1+2v+232u+2+v+13dydx=u+2v2u+v\frac{dy}{dx}=\frac{(u+1)+2(v+1)-3}{2(u+1)+2(v+1)-3}\\ \frac{dy}{dx}=\frac{u+1+2v+2-3}{2u+2+v+1-3}\\ \frac{dy}{dx}=\frac{u+2v}{2u+v}

And utilising the chain rule we have

dydx=dydvdvdududx    dydx=dvdu\frac{dy}{dx}= \frac{dy}{dv}\frac{dv}{du} \frac{du}{dx} \implies \frac{dy}{dx}= \frac{dv}{du}

Thus we have a transformed equation

dvdu=u+2v2u+v\frac{dv}{du}= \frac{u+2v}{2u+v}\\


This is now in a form that we can handle using a substitution of form v =wu, which if we differentiate wrt u using the product gives us.

Using this substitution into our modified DE, we get


udwdu=1+w22+wu \frac{dw}{du}= \frac{1+w^2}{2+w}\\

This is now a separable DE, so we can rearrange and separate the variables to get:

1udu=2+w1+w2lnw+1lnw112lnw21=lnu+lnC\int \frac{1}{u}du = \int \frac{2+w}{1+w^2}\\ \ln | w + 1 | − \ln | w − 1 | − 1 2 \ln ∣ ∣ w 2 − 1 ∣ ∣ = \ln | u | + \ln C

w+1w1w21=Cu(w+1)=Au2(w1)3\frac{| w + 1 |}{ | w − 1 | √ w 2 − 1} = | C u |\\ \therefore (w+1)=Au^2(w-1)^3

Then restoring the earlier w substitution, using w=vuw = \frac{v}{ u}  we get:

v+u=A(vu)3∴ v + u = A ( v − u )^ 3

(y1)+(x1)=A((y1)(x1))3( y − 1 ) + ( x − 1 ) = A ( ( y − 1 ) − ( x − 1 ) )^ 3

y+x2=A(yx)3∴ y + x − 2 = A ( y − x )^ 3

This is the General Solution, in implicit form.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS