x2y(3y+4xy2)dx+x2y(2x+3x2y)dy=0
P(x,y)=3x2y2+4x3y3,∂y∂P=6x2y+12x3y2
Q(x,y)=2x3y+3x4y2,∂x∂Q=6x2y+12x3y2
∂y∂P=6x2y+12x3y2=∂x∂Q Then exists u(x,y) such that
∂x∂u=P(x,y)=3x2y2+4x3y3
∂y∂u=Q(x,y)=2x3y+3x4y2
u=∫(3x2y2+4x3y3)dx+φ(y)
=x3y2+x4y3+φ(y)
∂y∂u=2x3y+3x4y2+φ′(y)=2x3y+3x4y2
=>φ′(y)=0=>φ(y)=C1
The general solution of the exact differential equation is given by
x3y2+x4y3=C where C is an arbitrary real number.
Comments