Create a dataframe by using the dataset [tipsnew.csv] and perform the
following operations
a) Print the day value when the value of total_bill is maximum and
minimum.
b) Retrieve all the rows from dataframe when the value of tip is more
than 3.0 and less than 5.0
c) Print the time of the meal and gender of the person who paid the tip
more than 5.0
d) Select and display last 10 rows from the dataframe when customer
smoking habbit is ‘yes’
e) Create the newdataframe(ndf) from original dataframe(df)
containing all rows and the following columns [total_bill
tip, size].
Sort and display all values of column tip in ascendending order
import pandas as pd
df = pd.read_csv(r"tipsnew.csv")
dataframe = pd.DataFrame(df)
total_bill = dataframe['total_bill']
total_bill_max = total_bill.max()
total_bill_min = total_bill.min()
index_max = dataframe.index[dataframe['total_bill'] == total_bill_max].tolist()
index_min = dataframe.index[dataframe['total_bill'] == total_bill_min].tolist()
print('\n a)')
print('Day maximum: ', dataframe.loc[index_max[0]]['day'])
print('Day minimum: ', dataframe.loc[index_min[0]]['day'])
b = dataframe[(dataframe.tip < 5.0) & (dataframe.tip > 3.0)]
print('\n b)')
print(b[['total_bill', 'tip', 'smoker', 'day', 'time', 'size']])
c = dataframe[dataframe.tip > 5.0]
print('\n c)')
print(c[['sex', 'tip']])
d = dataframe[dataframe.smoker == 'Yes']
print('\n d)')
print(d[-10:])
newdataframe = dataframe[['total_bill', 'tip', 'size']]
print('\n e)')
print(newdataframe)
Comments
Leave a comment