Max Contiguous Subarray
Given a list of integers, write a program to identify the contiguous sub-list that has the largest sum and print the sum. Any non-empty slice of the list with step size 1 can be considered as a contiguous sub-list.Input
The input will contain space-separated integers, denoting the elements of the list.Output
The output should be an integer.Explanation
For example, if the given list is [2, -4, 5, -1, 2, -3], then all the possible contiguous sub-lists will be,
[2]
[2, -4]
[2, -4, 5]
[2, -4, 5, -1]
[2, -4, 5, -1, 2]
[2, -4, 5, -1, 2, -3]
[-4]
[-4, 5]
[-4, 5, -1]
[-4, 5, -1, 2]
[-4, 5, -1, 2, -3]
[5]
[5, -1]
[5, -1, 2]
[5, -1, 2, -3]
[-1]
[-1, 2]
[-1, 2, -3]
[2]
[2, -3]
[-3]
Among the above contiguous sub-lists, the contiguous sub-list [5, -1, 2] has the largest sum which is 6.
Sample Input 1
2 -4 5 -1 2 -3
Sample Output 1
6
# max sub-list
def max_sub_list(L):
maxS = L[0]
maxI = 0
maxJ = 1
for i in range(len(L)-1):
for j in range(i+1, len(L)):
s = sum(L[i:j])
if s > maxS:
maxS = s
maxI = i
maxJ = j
return maxS
line = input()
L = [int(s) for s in line.split()]
print(max_sub_list(L))
Comments
Leave a comment