Answer to Question #113244 in Python for Abdullahi Bukar Hassan

Question #113244
Do Exercise 6.4 from your textbook using recursion and the is_divisible function from Section 6.4. Your program may assume that both arguments to is_power are positive integers. Note that the only positive integer that is a power of "1" is "1" itself.
After writing your is_power function, include the following test cases in your script to exercise the function and print the results:
print("is_power(10, 2) returns: ", is_power(10, 2))
print("is_power(27, 3) returns: ", is_power(27, 3))
print("is_power(1, 1) returns: ", is_power(1, 1))
print("is_power(10, 1) returns: ", is_power(10, 1))
print("is_power(3, 3) returns: ", is_power(3, 3))
You should submit a script file and a plain text output file (.txt) that contains the test output. Multiple file uploads are permitted. Don’t forget to include descriptive comments in your Python code.
1
Expert's answer
2020-05-03T15:27:34-0400

Script:


def is_divisible(a, b):
    return a % b == 0

def is_power(a, b):
    if a == 1:
        return True
    if b ==  1:
        return False
    if not is_divisible(a, b):
        return False
    return is_power(a/b, b)                        
    
print("is_power(10, 2) returns: ", is_power(10, 2))
print("is_power(27, 3) returns: ", is_power(27, 3))
print("is_power(1, 1) returns: ", is_power(1, 1))
print("is_power(10, 1) returns: ", is_power(10, 1))
print("is_power(3, 3) returns: ", is_power(3, 3))

Result:

is_power(10, 2) returns: False
is_power(27, 3) returns: True
is_power(1, 1) returns: True
is_power(10, 1) returns: False
is_power(3, 3) returns: True

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS