Given the function F (x, y, z)=Σm(0,1, 2 , 4 , 6) answer the following questions:
1. Obtain the expression in the Canonical Disjunctive Normal Form
"F(x,y,z) = \\bar x \\bar y \\bar z + \\bar x \\bar y z + \\bar x y \\bar z + x \\bar y \\bar z + x y \\bar z"
2. Obtain the expression in the Canonical Conjunctive Normal Form
"F(x,y,z) = (x + \\bar y + \\bar z)(\\bar x + y + \\bar z)(\\bar x + \\bar y + \\bar z)"
3. Derive the truth table for both the Minterms and Maxterms
4. Obtain the minimized SOP and POS
Let's receive (from POS) minimized SOP:
"F(x,y,z) = (x + \\bar y + \\bar z)(\\bar x + y + \\bar z)(\\bar x + \\bar y + \\bar z) = \\newline \n\\Big[ (a + b)(a + \\bar b) = aa + a \\bar b + ab + b \\bar b = a + a(\\bar b + b) + F = a + aT = a + a = a \\Big] = \\newline\n(x + \\bar y + \\bar z)(\\bar x + \\bar z) = x \\bar x + x \\bar z + \\bar x \\bar y + \\bar y \\bar z + \\bar x \\bar z + \\bar z \\bar z = \\bar z + \\bar z (x + \\bar x) + \\bar x \\bar y + \\bar y \\bar z = \\newline\n\\bar z + \\bar z T + \\bar z \\bar y + \\bar x \\bar y = \\bar z (T + T + \\bar y) + \\bar x \\bar y = \\bar z + \\bar x \\bar y"
Equivalent minimized POS will be:
"\\bar z + \\bar x \\bar y = (\\bar z + \\bar x)(\\bar z + \\bar y)"
5. Draw the resultant circuit diagram for the minimized SOP
Comments
Leave a comment