Question #117188
Given the function F (X, Y , Z)=Σm(0,1, 2 , 4 , 6) answer the following questions: 1. Obtain the expression in the Canonical Disjunctive Normal Form 2. Obtain the expression in the Canonical Conjunctive Normal Form 3. Derive the truth table for both the Minterms and Maxterms 4. Obtain the minimized SOP and POS 5. Draw the resultant circuit diagram for the minimized SOP
1
Expert's answer
2020-07-30T10:26:26-0400

Given the function F (x, y, z)=Σm(0,1, 2 , 4 , 6) answer the following questions:

1. Obtain the expression in the Canonical Disjunctive Normal Form

F(x,y,z)=xˉyˉzˉ+xˉyˉz+xˉyzˉ+xyˉzˉ+xyzˉF(x,y,z) = \bar x \bar y \bar z + \bar x \bar y z + \bar x y \bar z + x \bar y \bar z + x y \bar z


2. Obtain the expression in the Canonical Conjunctive Normal Form

F(x,y,z)=(x+yˉ+zˉ)(xˉ+y+zˉ)(xˉ+yˉ+zˉ)F(x,y,z) = (x + \bar y + \bar z)(\bar x + y + \bar z)(\bar x + \bar y + \bar z)


3. Derive the truth table for both the Minterms and Maxterms



4. Obtain the minimized SOP and POS

Let's receive (from POS) minimized SOP:

F(x,y,z)=(x+yˉ+zˉ)(xˉ+y+zˉ)(xˉ+yˉ+zˉ)=[(a+b)(a+bˉ)=aa+abˉ+ab+bbˉ=a+a(bˉ+b)+F=a+aT=a+a=a]=(x+yˉ+zˉ)(xˉ+zˉ)=xxˉ+xzˉ+xˉyˉ+yˉzˉ+xˉzˉ+zˉzˉ=zˉ+zˉ(x+xˉ)+xˉyˉ+yˉzˉ=zˉ+zˉT+zˉyˉ+xˉyˉ=zˉ(T+T+yˉ)+xˉyˉ=zˉ+xˉyˉF(x,y,z) = (x + \bar y + \bar z)(\bar x + y + \bar z)(\bar x + \bar y + \bar z) = \newline \Big[ (a + b)(a + \bar b) = aa + a \bar b + ab + b \bar b = a + a(\bar b + b) + F = a + aT = a + a = a \Big] = \newline (x + \bar y + \bar z)(\bar x + \bar z) = x \bar x + x \bar z + \bar x \bar y + \bar y \bar z + \bar x \bar z + \bar z \bar z = \bar z + \bar z (x + \bar x) + \bar x \bar y + \bar y \bar z = \newline \bar z + \bar z T + \bar z \bar y + \bar x \bar y = \bar z (T + T + \bar y) + \bar x \bar y = \bar z + \bar x \bar y

Equivalent minimized POS will be:

zˉ+xˉyˉ=(zˉ+xˉ)(zˉ+yˉ)\bar z + \bar x \bar y = (\bar z + \bar x)(\bar z + \bar y)


5. Draw the resultant circuit diagram for the minimized SOP

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS