Let's 3rd order differential equation is y ′ ′ ′ ( t ) = f ( t , y , y ′ , y ′ ′ ) y'''(t) = f(t, y, y', y'') y ′′′ ( t ) = f ( t , y , y ′ , y ′′ ) . let introduce new vector-function x → ( t ) \overrightarrow{x}(t) x ( t )
x → = [ x 1 ( t ) x 2 ( t ) x 3 ( t ) ] = [ y ( t ) y ′ ( t ) y ′ ′ ( t ) ] \overrightarrow{x} = \begin{bmatrix}
x_1(t) \\
x_2(t) \\
x_3(t)
\end{bmatrix} = \begin{bmatrix}
y(t) \\
y'(t) \\
y''(t)
\end{bmatrix} x = ⎣ ⎡ x 1 ( t ) x 2 ( t ) x 3 ( t ) ⎦ ⎤ = ⎣ ⎡ y ( t ) y ′ ( t ) y ′′ ( t ) ⎦ ⎤
then
d x → d t = d d t [ y ( t ) y ′ ( t ) y ′ ′ ( t ) ] = [ x 2 ( t ) x 3 ( t ) f ( t , x 1 ( t ) , x 2 ( t ) , x 3 ( t ) ] \frac{d \overrightarrow{x}}{d t} = \frac{d }{d t}
\begin{bmatrix}
y(t) \\
y'(t) \\
y''(t)
\end{bmatrix} =
\begin{bmatrix}
x_2(t) \\
x_3(t) \\
f(t, x_1(t), x_2(t), x_3(t)
\end{bmatrix} d t d x = d t d ⎣ ⎡ y ( t ) y ′ ( t ) y ′′ ( t ) ⎦ ⎤ = ⎣ ⎡ x 2 ( t ) x 3 ( t ) f ( t , x 1 ( t ) , x 2 ( t ) , x 3 ( t ) ⎦ ⎤
Comments