Question #257437

Apply Gauss’s Divergence theorem to evaluate taken over the

sphere being the direction cosines of the external normal to the

sphere.


1
Expert's answer
2021-10-27T16:25:40-0400

Here the given question is not complete and it is not from the related subject. So, I am answering the approach of the above question.

Gauss Divergence Theorem:

The surface integral of a vector A over the closed surface = Volume integral of the divergence of a vector field A over the volume enclosed by closed surface.


sA.dS=v(.A)dV\Rightarrow \oiint_s \overrightarrow{A}.\overrightarrow{dS}=\iiint_v(\overrightarrow{{\nabla}}.\overrightarrow{A})dV


Let there is a surface S, which encloses a surface A. Let A be the vector field in the given region.

Let the volume of the small part of the sphere ΔVj\Delta V_j which is bounded by a surface SjS_j


sA.dS\Rightarrow \oiint_s \overrightarrow{A}.\overrightarrow{dS}


Now, we will integrate the volume,


ΣsjA.dSj=sA.dS...(i)\Rightarrow \Sigma \oiint_{sj} \overrightarrow{A}.\overrightarrow{dS_j}=\oiint_s \overrightarrow{A}.\overrightarrow{dS}...(i)


Now, in the above equation, multiply and divide by the ΔVi\Delta V_i


sA.dS=Σ1ΔVi(AdSj)ΔVi\Rightarrow \oiint_s \overrightarrow{A}.\overrightarrow{dS}=\Sigma{\frac{1}{\Delta{V_i}}}(\oiint\overrightarrow{A}\overrightarrow{dS_j})\Delta{V_i}


Let volume is divide into the infinite elementary volume,


sA.dS=limΔvi0Σ1ΔVi(AdSj)ΔVi...(ii)\Rightarrow \oiint_s \overrightarrow{A}.\overrightarrow{dS}=\lim_{\Delta v_i\rightarrow 0}\Sigma{\frac{1}{\Delta{V_i}}}(\iint\overrightarrow{A}\overrightarrow{dS_j})\Delta{V_i}...(ii)


limΔvi0[Σ1ΔVi(AdSi)]=(V.A)\lim_{\Delta v_i\rightarrow 0}[\Sigma{\frac{1}{\Delta{V_i}}}(\oiint\overrightarrow{A}\overrightarrow{dS_i})]=(\overrightarrow{V}.\overrightarrow{A})


(A.dS)=Σ(.A)ΔVi\oiint{(\overrightarrow{A}.\overrightarrow{dS})}=\Sigma{(\overrightarrow{\nabla}.\overrightarrow{A})}\Delta{V}_i

Hence,

(A.dS)=v(.A)dV\oiint{(\overrightarrow{A}.\overrightarrow{dS})}=\iiint_v(\overrightarrow{\nabla}.\overrightarrow{A})dV


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS