Q3.A. Consider the relation schema R = (E,F,G,H,I,J,K,L,M,N) And the set of functional dependencies {{E,F} -> {G}, {F} -> {I,J},{E,H} ->{K,L}->{M},{K}->{M},{L}->{N}} on R. Find the key for R?
Q3. B. Consider the schema R(ABCDEFGHIJ) and functional dependencies {FDs=(AB->C,A->D,B->F,F->GH,D->IJ)} and decompositions
a) {D=(ABCDE,BFGH,DIJ)}
b) {D=(ABCD,DE,BF,FGH,DIJ)} Check whether the decomposition is lossless or not?
A.
the Given Relation-Schema is R (E, F, G, H, I, J, K, L, M, N) and the Given functional dependencies :
{E, F} → {G} (i) {K} → {M} (iv)
{F} → {I, J} (ii) {L} → {N} (v)
{E, H} → {K, L} (iii)
Now we need to find function dependency whose right side is R.
using Transitivity on (i) and (ii) we get
{E, F} → {G, I, J} .......(vi) ·
⚈ using preudotransitivity on (iii) and (vi) we get
{E, F, H} → {G, I, J, K, L} ........(vii)
⚈ using Decomposition on (vii) we get
{E, F, H} → {K} and {E, F, H} → {L}
Combining above with (iv) and (v) respectively
{E, F, H} → {M} and {E, F, H} → {N}
Now, finally performing union of these with (vii) we get:
{E, F, H} → {G, I, J, K, L, M, N} ...........(viii)
Also {E, F, H} → {E, F, H} is trivial, combine this with (viii) using union, we get:
{E, F, H} → {E, F, G, H, I, J, K, L, M, N}
⇒ {E, F, H} → R
So, {E, F, H} is a key of R.
Comments
Leave a comment