"F(x,y)=x^3+y^3-63(x+y)+12xy"
0 It's a polynomial function with continuous partial derivatives of any order.
1 What are the critical points?
"F^{'}_x=3x^2-63+12y"
"F^{'}_y=3y^2-63+12x"
"x^2-21+4y=0"
"y^2-21+4x=0"
2 Can we solve the system?
"4y=21-x^2""(21-x^2)^2-21*16+4*16*x=0"
"441-42x^2+x^4-336+64x=0"
"105-42x^2+x^4+64x=0"
"x^4-42x^2+64x+105=0 \\coloneqq P(x)"
"105=1*3*5*7"
"P(1)\\neq0,~P(-1)=0,~P(3)=0,~P(-3)\\neq0"
"P(5)=0,~P(-5)\\neq0,~P(7)\\neq0,~P(-7)=0"
Good, all roots (pairs of) are real (and symmetric).
"x=-7~~x=-1~~x=3~~~x=5"
"y=-7~~y=5~~~~~y=3~~~y=-1"
3 What does the second derivative test say?
"D=F^{''}_{xx}*F^{''}_{xx}-F^{''}_{xy}*F^{''}_{xy}"
"F^{''}_{xx}=6x"
"F^{''}_{yy}=6y"
"F^{''}_{xy}=12"
"D=36xy-144"
"D(-7, -7)>0,~~F^{''}_{xx} < 0 \\implies \\textnormal{local maximum}"
"D(-1, 5)<0~~~~~~~~~~~~~~~~~~~~\\implies \\textnormal{saddle point}"
"D(3, 3)>0,~~~~~~~~F^{''}_{xx}>0 \\implies \\textnormal{local minimum}"
"D(5, -1)<0~~~~~~~~~~~~~~~~~~~~\\implies \\textnormal{saddle point}"
Comments
Leave a comment