Write a top-level program for creating a GRAPH instance and running both Prim’s and Kruskal’s algorithms on it, and printing out the respective MSTs returned, along with the total cost and runtime (in milliseconds) for each one. The input to this top-level program 1 should be an n × n cost matrix for a graph, n being the number of vertices (assume the diagonal elements will always be 0, and elements corresponding to unconnected vertices will be set to −1); this can be read in from a text file. A sample input file is provided at http://web.iitd.ac.in/~sumeet/input_graph.txt).
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int M = 1e6-1;
int rt[M];
const int nodes = 4, edges = 5;
pair <long long, pair<int, int> > p[M];
int par(int a)
{
while(rt[a] != a)
{
rt[a] = rt[rt[a]];
a = rt[a];
}
return a;
}
void findUnion(int a, int b)
{
int d = par(a);
int e = par(b);
rt[d] = rt[e];
}
long long kruskal()
{
int a, b;
long long cost, min_cost = 0;
for(int i = 0 ; i < edges ; ++i)
{
a = p[i].second.first;
b = p[i].second.second;
cost = p[i].first;
if(par(a) != par(b))
{
min_cost += cost;
findUnion(a, b);
}
}
return min_cost;
}
int main()
{
int x, y;
long long weight, cost, min_cost;
for(int i = 0;i < M;++i)
{
rt[i] = i;
}
p[0] = make_pair(10, make_pair(0, 1));
p[1] = make_pair(11, make_pair(1, 2));
p[2] = make_pair(12, make_pair(2, 3));
p[3] = make_pair(14, make_pair(0, 2));
p[4] = make_pair(17, make_pair(1, 3));
sort(p, p + edges);
min_cost = kruskal();
cout << "Minimum cost: "<< min_cost << endl;
return 0;
}
Comments
Leave a comment