P = 0xC1300000 binary: 1100 0001 0011 0000 0000 0000 0000 0000
Q = 0x3D600000 binary: 0011 1101 0110 0000 0000 0000 0000 0000
The general representation formula is:
(-1)^s * (1+mantissa) * 2^(Exponent – 127)
Conversion:
The value of a IEEE-754 number is computed as:
The sign is stored in bit 32. The exponent can be computed from bits 24-31 by subtracting 127. The mantissa (also known as significand or fraction) is stored in bits 1-23. An invisible leading bit (i.e. it is not actually stored) with value 1.0 is placed in front, then bit 23 has a value of 1/2, bit 22 has value 1/4 etc. As a result, the mantissa has a value between 1.0 and 2
P Sign
bit Exponent Mantissa
1 10000010 01100000000000000000000
(-1)^1 2^3 1 + 1/4 + 1/8
-1 * 8 * 1.375 = -11
Q Sign
bit Exponent Mantissa
1 10000010 11000000000000000000000
(-1)^0 2^(-5) 1 + 1/2 + 1/4
1 * 0.03125 * 1.75 = 0.0546875
P*Q
P - 1.01100000000000000000000 *2^3
Q + 1.11000000000000000000000 *2^(-5)
-----------------------------------------------------------------------
P*Q - 10.01101000000000000000000|000 *2-2
P*Q - 1.00110100000000000000000|00 *2^(-1)
(1 + 1/8 + 1/16 + 1/64) * 2-1 = -0.6015625
P*Q - 1.00110100000000000000000 *2^(-1) = -0.6015625
Sign bit Exponent Mantissa
1 01111110 00110100000000000000000
ANSWER:
P*Q =
BIN: 1011 1111 0001 1010 0000 0000 0000 0000
HEX: 0xbf1a0000
P+Q
P - 1.01100000000000000000000|000 *2^3
Q + 0.00000001110000000000000|000 *2^3
----------------------------------------------------------------------------------
P+Q - 1.01011110010000000000000|000 *2^3
-1*(1 + 1/4 + 1/16 + 1/32 + 1.64 + 1/128 + 1/1024)* 2^3 = -10.9453125
P+Q= - 1.01011110010000000000000 *2^3 = -10.9453125
Sign bit Exponent Mantissa
1 10000010 01011110010000000000000
ANSWER:
P+Q =
BIN: 1100 0001 0010 1111 0010 0000 0000 0000
HEX:0xc12f2000
Comments
Leave a comment