The formula (A∨B) ∧ (¬B ∨C) simplifies down to which of the following when using Boolean algebra?
A. A ∧ C
B. A ∧ B ∨ C
C. A ∨ C
D. B
E. A ∧ ¬B ∨ C
Prove that none of the variants is correct:
A:A=1,B=0,C=0:(A∨B)∧(¬B∨C)=1,A∧C=0B:A=1,B=1,C=0:(A∨B)∧(¬B∨C)=0,A∧B∨C=1C:A=0,B=0,C=1:(A∨B)∧(¬B∨C)=0,A∨C=1D:A=1,B=0,C=0:(A∨B)∧(¬B∨C)=1,B=0E:A=0,B=0,C=1:(A∨B)∧(¬B∨C)=0,A∧¬B∨C=1A:\\A=1,B=0,C=0:\left( A\lor B \right) \land \left( \lnot B\lor C \right) =1,A\land C=0\\B:\\A=1,B=1,C=0:\left( A\lor B \right) \land \left( \lnot B\lor C \right) =0,A\land B\lor C=1\\C:\\A=0,B=0,C=1:\left( A\lor B \right) \land \left( \lnot B\lor C \right) =0,A\lor C=1\\D:\\A=1,B=0,C=0:\left( A\lor B \right) \land \left( \lnot B\lor C \right) =1,B=0\\E:\\A=0,B=0,C=1:\left( A\lor B \right) \land \left( \lnot B\lor C \right) =0,A\land \lnot B\lor C=1A:A=1,B=0,C=0:(A∨B)∧(¬B∨C)=1,A∧C=0B:A=1,B=1,C=0:(A∨B)∧(¬B∨C)=0,A∧B∨C=1C:A=0,B=0,C=1:(A∨B)∧(¬B∨C)=0,A∨C=1D:A=1,B=0,C=0:(A∨B)∧(¬B∨C)=1,B=0E:A=0,B=0,C=1:(A∨B)∧(¬B∨C)=0,A∧¬B∨C=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment