Prove that for regular languages L1 and L2 that L1∨L2 is regular.
Let M1=(S1,∑,δ1,s1,F1) and M2=(S2,∑,δ2,s2,F2) be DFA for L1 and L2
DFA Construction (the Product Construction):
We claim the DFA M=(S1×S2,∑,δ,(s1,s2),F) where
δ((s1,s2),a)=(δ1(s1,a),δ2(s2,a)) for all s1∈S1,s2∈S2 and a∈∑ ,
F=(F1×S2)∨(S1×F2)
accepts L1∨L2
i.e. L(M)=L(M1)∨L(M2) .
Proof of correctness: For every string w , we have:
δ^((s1,s2),w)=(δ^1(s1,w),δ^2(s2,w))
δ^((s1,s2),w)∈F iff δ^1(s1,w)∈F or δ^2(s2,w)∈F .
L1∨L2 is regular since there is a DFA accepting this language.
Comments