Answer to Question #157220 in Algorithms for nazia khan

Question #157220

Q: Write the Algorithm of Binary Search using binary search tree. Explain with example .


1
Expert's answer
2021-01-24T11:10:06-0500

It is using the divide and conquer searching technique in which we have to arrange the data in the particular format before the searching operation. After that we find the middle element of the array and then compare with the target element.

If item not found, then we again check the target element. If it is greater than or less than the middle element then we followed the following operations. If it is greater than the middle element then we searching in the right side of the middle element and if it is less than the middle element then we will search into the left side of the middle element.

Algorithm:

  1. Begin;Begin;
  2. Set  a[5]{10,20,30,40,50}Set\ \ a[5]\leftarrow \{10,20,30,40, 50\}
  3. Set lr0,up4,f0Set \ l_r\leftarrow 0, u_p\leftarrow 4, f\leftarrow 0
  4. Inpuut searching itemInpuut \ searching \ item
  5. Repeat 6 to 8 while( lr<up)Repeat \ 6 \ to \ 8 \ while (\ l_r<u_p)
  6. Set mid(lr+up2)Set \ mid\leftarrow (\frac{l_r+u_p}{2})
  7. if a[mid]=searching itemif \ a[mid]=searching \ item {Set if=1& break (element found)  break}\{Set \ if=1 \& \ break \ (element\ found)\ \ break \}
  8. if a[mid]<searching item thenif \ a[mid]<searching\ item \ then

{Set lrmid+1\{ Set \ l_r\leftarrow mid+1

elseelse

Set upmid1Set \ u_p\leftarrow mid-1

9 .If f=1 thenIf \ f=1 \ then

print(searching item found, location=mid)print(searching \ item \ found, \ location =mid)

elseelse

pinrt(element not found)pinrt(element\ not \ found)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment