Question #124278
Calculate the dot product of a= (22, 2, 7) & b= (12, -9, 11). And Cross Product of c= (4, 0, 3) & d= (3, 1, 7).
1
Expert's answer
2020-07-01T06:31:27-0400

1) Use the component formula for the dot product of three-dimensional vectors


ab=a1b1+a2b2+a3b3\bold{a\cdot b}=a_1 b_1 +a_2 b_2+a_3b_3ab=2212+2(9)+711=26418+77=323\bold{a\cdot b}=22\cdot 12+2\cdot(-9)+7\cdot 11=264-18+77=323

2) Use the formula for the cross product of three-dimensional vectors


a×b=a2a3b2b3ia1a3b1b3j+a1a2b1b2k\bold{a\times b}=\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}\bold{i}-\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}\bold{j}+\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}\bold{k}

a×b=27911i2271211j+222129k\bold{a\times b}=\begin{vmatrix} 2 & 7 \\ -9 & 11 \end{vmatrix}\bold{i}-\begin{vmatrix} 22 & 7 \\ 12 & 11 \end{vmatrix}\bold{j}+\begin{vmatrix} 22 & 2 \\ 12 &-9 \end{vmatrix}\bold{k}

a×b=(22+63)i(24284)j+(19824)k\bold{a\times b}=(22+63)\bold{i}-(242-84)\bold{j}+(-198-24)\bold{k}

a×b=85i158j222k\bold{a\times b}=85\bold{i}-158\bold{j}-222\bold{k}

a×b=(85,158,222)\bold{a\times b}=(85,-158,-222)

Answer:

1) 323

2) (85,-158,-222)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS