Question #208320

Three packing crates of masses, M1 = 6 kg, M2 = 2 kg

and M3 = 8 kg are connected by a light string of

negligible mass that passes over the pulley as shown.

Masses M1 and M3 lies on a 30o incline plane which

slides down the plane. The coefficient of kinetic friction

on the incline plane is 0.28. Determine the tension in the string that connects m1 and m2


1
Expert's answer
2021-06-21T11:38:13-0400

W1x+W3xfr=(m1+m3)aN1W1y+N3W3y=0N1+N3=W1y+W3y,W_{1x}+ W_{3x} - fr = (m_1 + m_3) a\\ N_1 - W_{1y} + N_3- W_{3y} = 0\\ N_1+ N_3 = W_{1y} + W_{3y},

sin30°=WxWWx=Wsin30°cos30°=WyWWy=Wcos30°,\sin 30° =\frac{ W_x}{W}\\ W_x = W \sin 30°\\ \cos 30° = \frac{W_{y} }{ W}\\ W_{y} = W \cos 30°,


N1+N3=W1cos30°+W3cos30°W1x+W3xμ(m1+m3)gcos30°=(m1+m3)aa=m1gsin30°+m3gsin30°μ(m1+m3)gcos30°m1+m3a=gsin30°μgcos30°,N_1+ N_3 = W_1 \cos 30° + W_3 \cos 30°\\ W_{1x} + W_{3x} - μ (m_1 + m_3) g \cos30° = (m_1 + m_3) a\\ a =\frac{ m_1g \sin 30° + m_3g \sin 30° - μ (m_1 + m_3) g \cos 30° }{m_1 + m_3}\\ a = g \sin 30 °- μ g \cos30°,


a=9.8sin30°0.289.8cos30°a=4.92.38a=2.5 ms2.a = 9.8 \sin 30 °- 0.28\cdot 9.8 \cos 30°\\ a = 4.9 - 2.38\\ a = 2.5 ~\frac{m}{s^2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS