find Approximation transmission probability in quantum mechanics E<U
Answer
Answer
Let for electron has wave function
"\\psi\\propto e^\\frac{ikx}{\\hbar}"
The effective momentum of electron is given by
"\\frac{\\hbar^2 k^2}{2m*}=-q\\phi"
"k=i\\sqrt{\\frac{2m*q\\phi}{\\hbar^2}}"
So wavefunction become
"\\psi\\propto e^{i\\sqrt{\\frac{2m*q\\phi}{\\hbar^2}}x}"
"\\frac{\\psi (x=d) }{\\psi(x=0) }\\propto \\frac{ e^{-\\sqrt{\\frac{2m*q\\phi}{\\hbar^2}}.d}}{e^{-\\sqrt{\\frac{2m*q\\phi}{\\hbar^2}}.0}}\\propto\n\ne^{-\\sqrt{\\frac{2m*q\\phi}{\\hbar^2}}d}"
Let JI
be the incident current and JT
be the transmitted current. Then
Transmission probability
"T\\propto \\frac{J_T}{J_0}\\propto (\\frac{\\psi(x=d) }{\\psi(x=0) }) ^2\\\\\\propto e^{-2\\sqrt{-\\frac{2m*q\\phi}{\\hbar^2}}d}"
Comments
Leave a comment