Question #101018
USING the uncertainty principle,
estimate the minimum energy of a particle in a simple harmonic potential U= ½kx² .
1
Expert's answer
2020-01-06T10:16:36-0500

The energy value can be calculated on the basis of the Hamiltonian of the system as follows:

E=<H^>=<T^>+<U^>=<p^2>2m+k<x^2>2E = <\hat{H}>=<\hat{T}> + <\hat{U}> = \frac{<\hat{p}^2>}{2m} + \frac{k <\hat{x}^2>}{2}

By definition, the uncertainties of the momentum and position operators are equal to:

(Δp)2=<p^2><p^>2,(Δx)2=<x^2><x^>2(\Delta{p})^2 = <\hat{p}^2> - <\hat{p}>^2, \quad (\Delta{x})^2 = <\hat{x}^2> - <\hat{x}>^2

Due to the symmetry of potential <p^>=0=<x^><\hat{p}> = 0 = <\hat{x}> .

Hence, we obtain:

E=(Δp)22m+k(Δx)22E = \frac{(\Delta p)^2}{2m} + \frac{k (\Delta x)^2}{2} .

The uncertainty principle states the following: ΔpΔx2\Delta p \Delta x \geq \frac{\hbar}{2} . Hence, Δp2Δx\Delta p \geq \frac{\hbar}{2 \Delta x} . As a result:

E()28m(Δx)2+k(Δx)22E \geq \frac{(\hbar)^2}{8 m (\Delta x)^2} + \frac{k (\Delta x)^2}{2}

The expression on the right side is minimal when ddx[()28m(Δx)2+k(Δx)22]=0\frac{d}{dx} \left[ \frac{(\hbar)^2}{8 m (\Delta x)^2} + \frac{k (\Delta x)^2}{2} \right] = 0. Doing this explicitly leads to the following result: (Δx)2=2km=2mω,(\Delta x)^2 = \frac{\hbar}{2 \sqrt{km}}=\frac{\hbar}{2 m \omega}, where we utilized the relation ω2=km.\omega^2 = \frac{k}{m}. Substituting this into the expression for energy results in the following:

Emin=22mω8m+mω24mω=ω2E_{min}= \frac{\hbar^2 2 m\omega}{8m \hbar}+ \frac{m \omega^2 \hbar}{4 m \omega} = \frac{\hbar \omega}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS