Show on the dimensional Analysis that v^2 - u^2 = 2as
Dimension of a speed
"[v]=[u]=\\rm m\/s=LT^{-1}"Dimension of an acceleration
"[a]=\\rm m\/s^2=LT^{-2}"Dimension of a distance
"[s]=\\rm m=L"Let's check an equation
"v^2 - u^2 = 2as"
We get
"[v^2]-[u^2]=[a][s]""\\rm (LT^{-1})^2-(LT^{-1})^2=(LT^{-2})L"
"\\rm L^2T^{-2}=L^2T^{-2}"
We get an identity, so equation is dimensionally correct.
Comments
Leave a comment