Derive an equation for interference of light for bright and dark fringes
When superimposing two coherent waves
"E_1=E_{01}\\cos (\\omega t-\\frac{2\\pi}{\\lambda }r_1+\\alpha_1)"
"E_2=E_{02}\\cos (\\omega t-\\frac{2\\pi}{\\lambda }r_2+\\alpha_2)"
the intensity of the resulting wave is equal to "I" ~ "E^2" . So, we get
...
"I=I_1+I_2+2\\sqrt{I_1I_2}\\cos\\Delta\\phi" .
The equation shows that at points in space where "\\cos\\Delta\\phi>0,\\ I>I_1+I_2" , ie there is an increase in intensity (maximums). If "\\cos\\Delta\\phi<0,\\ I<I_1+I_2" . In this case there is a decrease in light intensity (minimums).
The wave intensity will be maximum at "\\cos\\Delta\\phi=1" . Then:
"\\Delta \\phi=\\pm2\\pi k,\\ \\Delta=\\pm k\\lambda\\ (k=0,1,2, ...)" .
The minimum intensity will correspond to "\\cos\\Delta\\phi=-1" . In this case:
"\\Delta \\phi=\\pm(2k+1)\\pi,\\ \\Delta=\\pm (2k+1)\\frac{\\lambda}{2}\\ (k=0,1,2, ...)" ,
where "\\Delta" is the optical path length.
Comments
Leave a comment