Question #276722

Derive an equation for interference of light for bright and dark fringes


1
Expert's answer
2021-12-07T09:51:38-0500

When superimposing two coherent waves


E1=E01cos(ωt2πλr1+α1)E_1=E_{01}\cos (\omega t-\frac{2\pi}{\lambda }r_1+\alpha_1)

E2=E02cos(ωt2πλr2+α2)E_2=E_{02}\cos (\omega t-\frac{2\pi}{\lambda }r_2+\alpha_2)


the intensity of the resulting wave is equal to II ~ E2E^2 . So, we get

...

I=I1+I2+2I1I2cosΔϕI=I_1+I_2+2\sqrt{I_1I_2}\cos\Delta\phi .


The equation shows that at points in space where cosΔϕ>0, I>I1+I2\cos\Delta\phi>0,\ I>I_1+I_2 , ie there is an increase in intensity (maximums). If cosΔϕ<0, I<I1+I2\cos\Delta\phi<0,\ I<I_1+I_2 . In this case there is a decrease in light intensity (minimums).


The wave intensity will be maximum at cosΔϕ=1\cos\Delta\phi=1 . Then:


Δϕ=±2πk, Δ=±kλ (k=0,1,2,...)\Delta \phi=\pm2\pi k,\ \Delta=\pm k\lambda\ (k=0,1,2, ...) .


The minimum intensity will correspond to cosΔϕ=1\cos\Delta\phi=-1 . In this case:


Δϕ=±(2k+1)π, Δ=±(2k+1)λ2 (k=0,1,2,...)\Delta \phi=\pm(2k+1)\pi,\ \Delta=\pm (2k+1)\frac{\lambda}{2}\ (k=0,1,2, ...) ,


where Δ\Delta is the optical path length.











Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS