Question #274512

What are the horizontal range and maximum height of a bullet fired with a speed of 20 m/s at 30° above the horizontal?

1
Expert's answer
2021-12-02T10:03:59-0500

(a) Let's first find the time that the bullet takes to reach the maximum height:


v=v0sinθgt,v=v_0sin\theta-gt,0=v0sinθgt,0=v_0sin\theta-gt,t=v0sinθg.t=\dfrac{v_0sin\theta}{g}.


Then, we can find the flight time of the bullet:


tflight=2t=2v0sinθg,t_{flight}=2t=\dfrac{2v_0sin\theta}{g},tflight=2×20 ms×sin309.8 ms2=2.04 s.t_{flight}=\dfrac{2\times20\ \dfrac{m}{s}\times sin30^{\circ}}{9.8\ \dfrac{m}{s^2}}=2.04\ s.

Finally, we can find the horizontal range of the bullet from the kinematic equation:


x=v0tflightcosθ,x=v_0 t_{flight}cos\theta,x=20 ms×2.04 s×cos30=35.3 m.x=20\ \dfrac{m}{s}\times2.04\ s\times cos30^{\circ}=35.3\ m.


(b) We can find the maximum height reached by the bullet from the kinematic equation:


ymax=v0tsinθ12gt2.y_{max}=v_0tsin\theta-\dfrac{1}{2}gt^2.

Substituting tt into the previous equation, we get:


ymax=v0sinθ(v0sinθg)12g(v0sinθg)2,y_{max}=v_0sin\theta(\dfrac{v_0sin\theta}{g})-\dfrac{1}{2}g(\dfrac{v_0sin\theta}{g})^2,ymax=v02sin2θ2g,y_{max}=\dfrac{v_0^2sin^2\theta}{2g},ymax=(20 ms)2sin2302×9.8 ms2=5.1 m.y_{max}=\dfrac{(20\ \dfrac{m}{s})^2sin^230^{\circ}}{2\times9.8\ \dfrac{m}{s^2}}=5.1\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS