What is the shortest wavelength present in the Brackett series of spectral lines?
Rydberg's formula for the Bracket series looks like this:
1λ=R(142−1m2)\frac{1}{\lambda}=R(\frac{1}{4^2}-\frac{1}{m^2})λ1=R(421−m21) , where R=1.0974⋅107 (m−1)R=1.0974\cdot10^{7}\ (m^{-1})R=1.0974⋅107 (m−1) .
If m→∞m\to\infinm→∞ then
1λ=1.0974⋅107⋅(142−1∞)→λ=1458 (nm)\frac{1}{\lambda}=1.0974\cdot10^{7}\cdot(\frac{1}{4^2}-\frac{1}{\infin})\to\lambda=1458\ (nm)λ1=1.0974⋅107⋅(421−∞1)→λ=1458 (nm) . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments