What is the shortest wavelength present in the Brackett series of spectral lines?
Rydberg's formula for the Bracket series looks like this:
"\\frac{1}{\\lambda}=R(\\frac{1}{4^2}-\\frac{1}{m^2})" , where "R=1.0974\\cdot10^{7}\\ (m^{-1})" .
If "m\\to\\infin" then
"\\frac{1}{\\lambda}=1.0974\\cdot10^{7}\\cdot(\\frac{1}{4^2}-\\frac{1}{\\infin})\\to\\lambda=1458\\ (nm)" . Answer
Comments
Leave a comment