Let's first find the angular acceleration of the wheel:
"a=r\\alpha,""\\alpha=\\dfrac{a}{r}=\\dfrac{15\\ \\dfrac{m}{s^2}}{0.4\\ m}=37.5\\ \\dfrac{rad}{s^2}."
Also, we need to find the time that the wheel takes to accelerate:
"t=\\dfrac{\\omega_f-\\omega_i}{\\alpha}=\\dfrac{80\\ \\dfrac{rad}{s}-30\\ \\dfrac{rad}{s}}{37.5\\ \\dfrac{rad}{s^2}}=1.33\\ s."Then, we can find the angular displacement of the wheel:
"\\theta=\\omega_it+\\dfrac{1}{2}\\alpha t^2,""\\theta=30\\ \\dfrac{rad}{s}\\times1.33\\ s+\\dfrac{1}{2}\\times37.5\\ \\dfrac{rad}{s^2}\\times(1.33\\ s)^2=73\\ rad."Finally, we can find the number of revolutions that the wheell will go through during this period:
"n=\\dfrac{\\theta}{2\\pi\\ \\dfrac{rad}{rev}}=\\dfrac{73\\ rad}{2\\pi\\ \\dfrac{rad}{rev}}=12\\ rev."
Comments
Leave a comment