Question #270460
  1. A wheel with a diameter of 80cm speeds up from 30 rad/s to 80 rad/s. The linear acceleration at the edge of the wheel is 15 m/s2. How many revolutions will the wheel go through during this period?
1
Expert's answer
2021-11-24T11:48:37-0500

Let's first find the angular acceleration of the wheel:


a=rα,a=r\alpha,α=ar=15 ms20.4 m=37.5 rads2.\alpha=\dfrac{a}{r}=\dfrac{15\ \dfrac{m}{s^2}}{0.4\ m}=37.5\ \dfrac{rad}{s^2}.


Also, we need to find the time that the wheel takes to accelerate:


t=ωfωiα=80 rads30 rads37.5 rads2=1.33 s.t=\dfrac{\omega_f-\omega_i}{\alpha}=\dfrac{80\ \dfrac{rad}{s}-30\ \dfrac{rad}{s}}{37.5\ \dfrac{rad}{s^2}}=1.33\ s.

Then, we can find the angular displacement of the wheel:


θ=ωit+12αt2,\theta=\omega_it+\dfrac{1}{2}\alpha t^2,θ=30 rads×1.33 s+12×37.5 rads2×(1.33 s)2=73 rad.\theta=30\ \dfrac{rad}{s}\times1.33\ s+\dfrac{1}{2}\times37.5\ \dfrac{rad}{s^2}\times(1.33\ s)^2=73\ rad.

Finally, we can find the number of revolutions that the wheell will go through during  this period:


n=θ2π radrev=73 rad2π radrev=12 rev.n=\dfrac{\theta}{2\pi\ \dfrac{rad}{rev}}=\dfrac{73\ rad}{2\pi\ \dfrac{rad}{rev}}=12\ rev.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS