If φ = 2xz4 – x2y, find ∇φ and ‖∇φ‖ at the point (2, -2, -1).
Ans. 10 𝒂̂𝑥 - 4 𝒂̂𝑦 - 16 𝒂̂𝑧 , 2√93
The gradient of scalar field is given by
"\\nabla\\varphi=\\frac{\\partial \\varphi}{\\partial x}{\\hat i}+\\frac{\\partial \\varphi}{\\partial y}{\\hat j}+\\frac{\\partial \\varphi}{\\partial z}{\\hat k}"We get
"\\nabla\\varphi=\\left(\\frac{\\partial }{\\partial x}{\\hat i}+\\frac{\\partial }{\\partial y}{\\hat j}+\\frac{\\partial }{\\partial z}{\\hat k}\\right)(2xz^4-x^2y)""\\nabla\\varphi=(2z^4-2xy){\\hat i}-x^2{\\hat j}+8xz^3{\\hat k}"
"=(2*(-1)^4-2*2*(-2)){\\hat i}-2^2{\\hat j}\\\\+8*2*(-1)^3{\\hat k}\n=10{\\hat i}-4{\\hat j}-16{\\hat k}"
"|\\nabla \\varphi|=\\sqrt{10^2+(-4)^2+(-16)^2}=2\\sqrt{93}"
Comments
Leave a comment