Question #270320

If φ = 2xz4 – x2y, find ∇φ and ‖∇φ‖ at the point (2, -2, -1).

Ans. 10 𝒂̂𝑥 - 4 𝒂̂𝑦 - 16 𝒂̂𝑧 , 2√93


1
Expert's answer
2021-11-24T12:01:41-0500

The gradient of scalar field is given by

φ=φxi^+φyj^+φzk^\nabla\varphi=\frac{\partial \varphi}{\partial x}{\hat i}+\frac{\partial \varphi}{\partial y}{\hat j}+\frac{\partial \varphi}{\partial z}{\hat k}

We get

φ=(xi^+yj^+zk^)(2xz4x2y)\nabla\varphi=\left(\frac{\partial }{\partial x}{\hat i}+\frac{\partial }{\partial y}{\hat j}+\frac{\partial }{\partial z}{\hat k}\right)(2xz^4-x^2y)

φ=(2z42xy)i^x2j^+8xz3k^\nabla\varphi=(2z^4-2xy){\hat i}-x^2{\hat j}+8xz^3{\hat k}

=(2(1)422(2))i^22j^+82(1)3k^=10i^4j^16k^=(2*(-1)^4-2*2*(-2)){\hat i}-2^2{\hat j}\\+8*2*(-1)^3{\hat k} =10{\hat i}-4{\hat j}-16{\hat k}

φ=102+(4)2+(16)2=293|\nabla \varphi|=\sqrt{10^2+(-4)^2+(-16)^2}=2\sqrt{93}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS