A particle starts from the origin at t
t = 0 with an initial velocity of 4.9 m/s
m/s along the positive x
x axis.If the acceleration is (-2.9 i
^
i^ + 4.7 j
j^)m/s
2
m/s2, determine (a)the velocity and (b)position of the particle at the moment it reaches its maximum x
x coordinate.
vx,vy =? rx,ry=?
a⃗=−2.9i⃗+4.7j⃗\vec a=-2.9\vec i+4.7\vec ja=−2.9i+4.7j
If t=0t=0t=0 then v⃗0=4.9i⃗\vec v_0=4.9\vec iv0=4.9i .
a⃗=dv⃗dt→v⃗=∫a⃗dt=(4.9−2.9t)i⃗+4.7tj⃗\vec a=\frac{d\vec v}{dt}\to \vec v=\int\vec adt=(4.9-2.9t)\vec i+4.7t\vec ja=dtdv→v=∫adt=(4.9−2.9t)i+4.7tj
r⃗=(4.9t−1.45t2)i⃗+2.35t2j⃗\vec r=(4.9t-1.45t^2)\vec i+2.35t^2\vec jr=(4.9t−1.45t2)i+2.35t2j
rx=rx maxr_x=r_{x \ max}rx=rx max when t=1.69 (s)t=1.69\ (s)t=1.69 (s)
(a) vx=4.9−2.9⋅1.69=0v_x=4.9-2.9\cdot1.69=0vx=4.9−2.9⋅1.69=0
vy=4.7⋅1.69=7.9 (m/s)v_y=4.7\cdot1.69=7.9\ (m/s)vy=4.7⋅1.69=7.9 (m/s)
(b) rx max=4.9⋅1.69−1.45⋅1.692=4.14 (m)r_{x\ max}=4.9\cdot 1.69-1.45\cdot1.69^2=4.14\ (m)rx max=4.9⋅1.69−1.45⋅1.692=4.14 (m)
ry=2.35⋅1.692=6.7 (m)r_{y}=2.35\cdot1.69^2=6.7\ (m)ry=2.35⋅1.692=6.7 (m)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments