a ⃗ = − 2.9 i ⃗ + 4.7 j ⃗ \vec a=-2.9\vec i+4.7\vec j a = − 2.9 i + 4.7 j
If t = 0 t=0 t = 0 then v ⃗ 0 = 4.9 i ⃗ \vec v_0=4.9\vec i v 0 = 4.9 i .
a ⃗ = d v ⃗ d t → v ⃗ = ∫ a ⃗ d t = ( 4.9 − 2.9 t ) i ⃗ + 4.7 t j ⃗ \vec a=\frac{d\vec v}{dt}\to \vec v=\int\vec adt=(4.9-2.9t)\vec i+4.7t\vec j a = d t d v → v = ∫ a d t = ( 4.9 − 2.9 t ) i + 4.7 t j
r ⃗ = ( 4.9 t − 1.45 t 2 ) i ⃗ + 2.35 t 2 j ⃗ \vec r=(4.9t-1.45t^2)\vec i+2.35t^2\vec j r = ( 4.9 t − 1.45 t 2 ) i + 2.35 t 2 j
r x = r x m a x r_x=r_{x \ max} r x = r x ma x when t = 1.69 ( s ) t=1.69\ (s) t = 1.69 ( s )
(a) v x = 4.9 − 2.9 ⋅ 1.69 = 0 v_x=4.9-2.9\cdot1.69=0 v x = 4.9 − 2.9 ⋅ 1.69 = 0
v y = 4.7 ⋅ 1.69 = 7.9 ( m / s ) v_y=4.7\cdot1.69=7.9\ (m/s) v y = 4.7 ⋅ 1.69 = 7.9 ( m / s )
(b) r x m a x = 4.9 ⋅ 1.69 − 1.45 ⋅ 1.6 9 2 = 4.14 ( m ) r_{x\ max}=4.9\cdot 1.69-1.45\cdot1.69^2=4.14\ (m) r x ma x = 4.9 ⋅ 1.69 − 1.45 ⋅ 1.6 9 2 = 4.14 ( m )
r y = 2.35 ⋅ 1.6 9 2 = 6.7 ( m ) r_{y}=2.35\cdot1.69^2=6.7\ (m) r y = 2.35 ⋅ 1.6 9 2 = 6.7 ( m )
Comments