Question #268268

In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.3 m and then collides with stationary block 2, which has mass m2 = 4m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.6 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?


The tolerance is in the 2nd significant digit.


1
Expert's answer
2021-11-21T17:24:57-0500

(a) mgh=mv2/2v=2gh=29.82.3=6.71 (m/s)mgh=mv^2/2\to v=\sqrt{2gh}=\sqrt{2\cdot9.8\cdot2.3}=6.71\ (m/s)


mv=mv1+4mv26.71=v1+4v2mv=mv_1+4mv_2\to6.71=v_1+4v_2


mv2/2=mv12/2+4mv22/245=v12+4v22mv^2/2=mv_1^2/2+4mv_2^2/2\to 45=v_1^2+4v_2^2


we have v2=2.68 (m/s)v_2=2.68\ (m/s)


F=4maμ4mg=4maa=0.69.8=5.88 (m/s2)F=4ma\to \mu 4mg= 4ma\to a=0.6\cdot9.8=5.88\ (m/s^2)


s=v2v022a=022.6822(5.88)=0.61 (m)s=\frac{v^2-v_0^2}{2a}=\frac{0^2-2.68^2}{2\cdot (-5.88)}=0.61\ (m) . Answer


(b) mgh=mv2/2v=2gh=29.82.3=6.71 (m/s)mgh=mv^2/2\to v=\sqrt{2gh}=\sqrt{2\cdot9.8\cdot2.3}=6.71\ (m/s)


mv=(m+m1)v1v1=mv/(m+4m)=6.71/5=1.34 (m/s)mv=(m+m_1)v_1\to v_1=mv/(m+4m)=6.71/5=1.34\ (m/s)


F=5maμ5mg=5maa=μg=0.69.8=5.88 (m/s2)F=5ma\to\mu 5mg=5ma\to a=\mu g=0.6\cdot 9.8=5.88\ (m/s^2)


s=v2v022a=021.3422(5.88)=0.15 (m)s=\frac{v^2-v_0^2}{2a}=\frac{0^2-1.34^2}{2\cdot (-5.88)}=0.15\ (m) . Answer






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS