Question #263310

An aircraft shell is fired vertically upward with a muzzle velocity of 1000ms.calculate;


a=the maximum height it can attain


b=the time taken to reach this height


c=the instantaneous velocities at the ends of 20sec and 50sec


d=when will it's height be 37.5km.interprete your result. neglect air resistance.

1
Expert's answer
2021-11-11T12:16:21-0500

(a) Let's take the upwards as the positive direction. Then, we can find the maximum height from the kinematic equation:


v2=v02+2gh,v^2=v_0^2+2gh,0=v02+2gh,0=v_0^2+2gh,h=v022g=(1000 ms)22×(9.8 ms2)=51 km.h=\dfrac{-v_0^2}{2g}=-\dfrac{(1000\ \dfrac{m}{s})^2}{2\times(-9.8\ \dfrac{m}{s^2})}=51\ km.

(b) We can find the time that shell takes to reach the maximum height from the kinematic equation:


v=v0+gt,v=v_0+gt,0=v0+gt,0=v_0+gt,t=v0g=1000 ms9.8 ms2=102 s.t=\dfrac{-v_0}{g}=\dfrac{-1000\ \dfrac{m}{s}}{-9.8\ \dfrac{m}{s^2}}=102\ s.

(c) We can find the instantaneous velocity at the end of 20 s20\ s from the kinematic equation:


v=v0+gt=1000 ms+(9.8 ms2)×20 s=804 ms.v=v_0+gt=1000\ \dfrac{m}{s}+(-9.8\ \dfrac{m}{s^2})\times20\ s=804\ \dfrac{m}{s}.

We can find the instantaneous velocity at the end of 50 s50\ s from the kinematic equation:


v=v0+gt=1000 ms+(9.8 ms2)×50 s=510 ms.v=v_0+gt=1000\ \dfrac{m}{s}+(-9.8\ \dfrac{m}{s^2})\times50\ s=510\ \dfrac{m}{s}.


(d) We can find the time the shell takes to reach the height of 37.5 km from the kinematic equation:


y=v0t12gt2,y=v_0t-\dfrac{1}{2}gt^2,37500=1000t4.9t2,37500=1000t-4.9t^2,4.9t21000t+37500=0.4.9t^2-1000t+37500=0.

This quadratic equation has two roots: t1=154.6 st_1=154.6\ s and t2=49.5 st_2=49.5\ s. The time t=49.5 st=49.5\ s corresponds to the case where the shell first reaches the height of 37.5 km (as it rises up). The time t=154.6 st=154.6\ s corresponds to the case where the shell secondly reaches the height of 37.5 km (as it falls down).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS