Consider the following data to find the Young’s Modulus, E, of a steel wire of length l and diameter d,
given that:
E = 4 Mgl / πed 2
and:
Length of wire (l) = (3.025 ± 0.005) m
Diameter of wire (d) = (0.84 ± 0.01) mm
Mass supported by wire (M) = (5.000 ± 0.002) kg
Extension caused (e) = (1.27 ± 0.02) mm
Acceleration of free fall (g) = (9.81 ± 0.01) ms -2
E=4Mgl/(πed2)=E=4Mgl/(\pi ed^2)=E=4Mgl/(πed2)=
=4⋅5.000⋅9.81⋅3.025⋅109/(3.14⋅1.27⋅0.842)==4\cdot5.000\cdot9.81\cdot3.025\cdot10^9/(3.14\cdot1.27\cdot0.84^2)==4⋅5.000⋅9.81⋅3.025⋅109/(3.14⋅1.27⋅0.842)=
=210.82 (GPa)=210.82\ (GPa)=210.82 (GPa)
ΔE/E=(ΔM/M)2+(Δg/g)2+(Δl/l)2+(Δe/e)2+(2Δd/d)2=\Delta E/E=\sqrt{(\Delta M/M)^2+(\Delta g/g)^2+(\Delta l/l)^2+(\Delta e/e)^2+(2\Delta d/d)^2}=ΔE/E=(ΔM/M)2+(Δg/g)2+(Δl/l)2+(Δe/e)2+(2Δd/d)2=
=(0.002/5)2+(0.01/9.81)2+(0.005/3.025)2+(0.02/1.27)2+(2⋅0.01/0.84)2=0.0286=\sqrt{( 0.002/5)^2+(0.01/9.81)^2+(0.005/3.025)^2+(0.02/1.27)^2+(2\cdot 0.01/0.84)^2}=0.0286=(0.002/5)2+(0.01/9.81)2+(0.005/3.025)2+(0.02/1.27)2+(2⋅0.01/0.84)2=0.0286
ΔE=6.03 (GPa)\Delta E=6.03\ (GPa)ΔE=6.03 (GPa)
E=(210.82±6.03) GPaE=(210.82±6.03)\ GPaE=(210.82±6.03) GPa
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments