Consider the following data to find the Young’s Modulus, E, of a steel wire of length l and diameter d,
given that:
E = 4 Mgl / πed 2
and:
Length of wire (l) = (3.025 ± 0.005) m
Diameter of wire (d) = (0.84 ± 0.01) mm
Mass supported by wire (M) = (5.000 ± 0.002) kg
Extension caused (e) = (1.27 ± 0.02) mm
Acceleration of free fall (g) = (9.81 ± 0.01) ms -2
"E=4Mgl\/(\\pi ed^2)="
"=4\\cdot5.000\\cdot9.81\\cdot3.025\\cdot10^9\/(3.14\\cdot1.27\\cdot0.84^2)="
"=210.82\\ (GPa)"
"\\Delta E\/E=\\sqrt{(\\Delta M\/M)^2+(\\Delta g\/g)^2+(\\Delta l\/l)^2+(\\Delta e\/e)^2+(2\\Delta d\/d)^2}="
"=\\sqrt{( 0.002\/5)^2+(0.01\/9.81)^2+(0.005\/3.025)^2+(0.02\/1.27)^2+(2\\cdot 0.01\/0.84)^2}=0.0286"
"\\Delta E=6.03\\ (GPa)"
"E=(210.82\u00b16.03)\\ GPa"
Comments
Leave a comment