Question #258306

In a simple pendulum experiment to determine g the equation used is


T = 2π √ (l /g)


where T, the period is found to be (2.16 ± 0.01) s when the length l of the pendulum is

(1.150 ± 0.005) m. Find the value of g and its uncertainty.


1
Expert's answer
2021-10-31T18:12:41-0400

The value of g:


gt=4π2lT2=9.73 m/s2.g_t=\frac{4\pi^2 l}{T^2}=9.73\text{ m/s}^2.

Maximum uncertainty:


Δgmax=gt4π2(1.15+0.005)(2.160.01)2=0.13 m/s2, Δgmin=gt4π2(1.150.005)(2.16+0.01)2=0.13 m/s2, Δg=12(Δgmin+Δgmax)=0.13 m/s2. g=gt±Δg=(9.73±0.13) m/s2.\Delta g_\text{max}=\bigg|g_t-\frac{4\pi^2 (1.15+0.005)}{(2.16-0.01)^2}\bigg|=0.13\text{ m/s}^2,\\\space\\ \Delta g_\text{min}=\bigg|g_t-\frac{4\pi^2 (1.15-0.005)}{(2.16+0.01)^2}\bigg|=0.13\text{ m/s}^2,\\\space\\ \Delta g=\frac12(\Delta g_\text{min}+\Delta g_\text{max})=0.13\text{ m/s}^2.\\\space\\ g=g_t\pm\Delta g=(9.73\pm0.13)\text{ m/s}^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS