F1= 4 N 45O North of east F2= 8 N 30o North of west F3= 3 N. 20o South of West F4= 6.5 N North
F5= 2.5 N. East FR=
Let's first find "x"- and "y"-components of the resultant force:
"F_{res,x}=4\\ N\\times cos45^{\\circ}+8\\ N\\times cos(180^{\\circ}-30^{\\circ})+3\\ N\\times cos(180^{\\circ}+20^{\\circ})+6.5\\ N\\times cos90^{\\circ}+2.5\\ N\\times cos0^{\\circ}=-4.42\\ N,""F_{res,y}=4\\ N\\times sin45^{\\circ}+8\\ N\\times sin(180^{\\circ}-30^{\\circ})+3\\ N\\times sin(180^{\\circ}+20^{\\circ})+6.5\\ N\\times sin90^{\\circ}+2.5\\ N\\times sin0^{\\circ}=12.3\\ N."
We can find the magnitude of the resultant force from the Pythagorean theorem:
We can find the direction of the resultant force from the geometry:
Comments
Leave a comment