Question #256364

F1= 4 N 45O North of east F2= 8 N 30o North of west F3= 3 N. 20o South of West F4= 6.5 N North

F5= 2.5 N. East FR=


1
Expert's answer
2021-10-25T17:54:59-0400

Let's first find xx- and yy-components of the resultant force:

Fres,x=4 N×cos45+8 N×cos(18030)+3 N×cos(180+20)+6.5 N×cos90+2.5 N×cos0=4.42 N,F_{res,x}=4\ N\times cos45^{\circ}+8\ N\times cos(180^{\circ}-30^{\circ})+3\ N\times cos(180^{\circ}+20^{\circ})+6.5\ N\times cos90^{\circ}+2.5\ N\times cos0^{\circ}=-4.42\ N,Fres,y=4 N×sin45+8 N×sin(18030)+3 N×sin(180+20)+6.5 N×sin90+2.5 N×sin0=12.3 N.F_{res,y}=4\ N\times sin45^{\circ}+8\ N\times sin(180^{\circ}-30^{\circ})+3\ N\times sin(180^{\circ}+20^{\circ})+6.5\ N\times sin90^{\circ}+2.5\ N\times sin0^{\circ}=12.3\ N.

We can find the magnitude of the resultant force from the Pythagorean theorem:


Fres=Fres,x2+Fres,y2=(4.42 N)2+(12.3 N)2=13.1 N.F_{res}=\sqrt{F_{res,x}^2+F_{res,y}^2}=\sqrt{(-4.42\ N)^2+(12.3\ N)^2}=13.1\ N.


We can find the direction of the resultant force from the geometry:


θ=tan1(Fres,yFres,x),\theta=tan^{-1}(\dfrac{F_{res,y}}{F_{res,x}}),θ=tan1(12.3 N4.42 N)=70.2 N of W.\theta=tan^{-1}({\dfrac{12.3\ N}{-4.42\ N}})=70.2^{\circ}\ N\ of\ W.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS