Let's first find x x x - and y y y -components of the resultant force:
F r e s , x = 4 N × c o s 4 5 ∘ + 8 N × c o s ( 18 0 ∘ − 3 0 ∘ ) + 3 N × c o s ( 18 0 ∘ + 2 0 ∘ ) + 6.5 N × c o s 9 0 ∘ + 2.5 N × c o s 0 ∘ = − 4.42 N , F_{res,x}=4\ N\times cos45^{\circ}+8\ N\times cos(180^{\circ}-30^{\circ})+3\ N\times cos(180^{\circ}+20^{\circ})+6.5\ N\times cos90^{\circ}+2.5\ N\times cos0^{\circ}=-4.42\ N, F res , x = 4 N × cos 4 5 ∘ + 8 N × cos ( 18 0 ∘ − 3 0 ∘ ) + 3 N × cos ( 18 0 ∘ + 2 0 ∘ ) + 6.5 N × cos 9 0 ∘ + 2.5 N × cos 0 ∘ = − 4.42 N , F r e s , y = 4 N × s i n 4 5 ∘ + 8 N × s i n ( 18 0 ∘ − 3 0 ∘ ) + 3 N × s i n ( 18 0 ∘ + 2 0 ∘ ) + 6.5 N × s i n 9 0 ∘ + 2.5 N × s i n 0 ∘ = 12.3 N . F_{res,y}=4\ N\times sin45^{\circ}+8\ N\times sin(180^{\circ}-30^{\circ})+3\ N\times sin(180^{\circ}+20^{\circ})+6.5\ N\times sin90^{\circ}+2.5\ N\times sin0^{\circ}=12.3\ N. F res , y = 4 N × s in 4 5 ∘ + 8 N × s in ( 18 0 ∘ − 3 0 ∘ ) + 3 N × s in ( 18 0 ∘ + 2 0 ∘ ) + 6.5 N × s in 9 0 ∘ + 2.5 N × s in 0 ∘ = 12.3 N .
We can find the magnitude of the resultant force from the Pythagorean theorem:
F r e s = F r e s , x 2 + F r e s , y 2 = ( − 4.42 N ) 2 + ( 12.3 N ) 2 = 13.1 N . F_{res}=\sqrt{F_{res,x}^2+F_{res,y}^2}=\sqrt{(-4.42\ N)^2+(12.3\ N)^2}=13.1\ N. F res = F res , x 2 + F res , y 2 = ( − 4.42 N ) 2 + ( 12.3 N ) 2 = 13.1 N .
We can find the direction of the resultant force from the geometry:
θ = t a n − 1 ( F r e s , y F r e s , x ) , \theta=tan^{-1}(\dfrac{F_{res,y}}{F_{res,x}}), θ = t a n − 1 ( F res , x F res , y ) , θ = t a n − 1 ( 12.3 N − 4.42 N ) = 70. 2 ∘ N o f W . \theta=tan^{-1}({\dfrac{12.3\ N}{-4.42\ N}})=70.2^{\circ}\ N\ of\ W. θ = t a n − 1 ( − 4.42 N 12.3 N ) = 70. 2 ∘ N o f W .
Comments