Let's first find x x x - and y y y -components of the resultant displacement:
d x = 6 m i ⋅ c o s 0 ∘ + 15 m i ⋅ c o s 9 0 ∘ + 1 m i ⋅ c o s 18 0 ∘ + 3 m i ⋅ c o s 27 0 ∘ = 5 m i , d_x=6\ mi\cdot cos0^{\circ}+15\ mi\cdot cos90^{\circ}+1\ mi\cdot cos180^{\circ}+3\ mi\cdot cos270^{\circ}=5\ mi, d x = 6 mi ⋅ cos 0 ∘ + 15 mi ⋅ cos 9 0 ∘ + 1 mi ⋅ cos 18 0 ∘ + 3 mi ⋅ cos 27 0 ∘ = 5 mi ,
d y = 6 m i ⋅ s i n 0 ∘ + 15 m i ⋅ s i n 9 0 ∘ + 1 m i ⋅ s i n 18 0 ∘ + 3 m i ⋅ s i n 27 0 ∘ = 12 m i . d_y=6\ mi\cdot sin0^{\circ}+15\ mi\cdot sin90^{\circ}+1\ mi\cdot sin180^{\circ}+3\ mi\cdot sin270^{\circ}=12\ mi. d y = 6 mi ⋅ s in 0 ∘ + 15 mi ⋅ s in 9 0 ∘ + 1 mi ⋅ s in 18 0 ∘ + 3 mi ⋅ s in 27 0 ∘ = 12 mi .
We can find the magnitude of the resultant displacement from the Pythagorean theorem:
d = d x 2 + d y 2 = ( 5 m i ) 2 + ( 12 m i ) 2 = 13 m i . d=\sqrt{d_x^2+d_y^2}=\sqrt{(5\ mi)^2+(12\ mi)^2}=13\ mi. d = d x 2 + d y 2 = ( 5 mi ) 2 + ( 12 mi ) 2 = 13 mi . We can find the direction of the resultant displacement from the geometry:
θ = t a n − 1 ( d y d x ) , \theta=tan^{-1}({\dfrac{d_y}{d_x}}), θ = t a n − 1 ( d x d y ) , θ = t a n − 1 ( 12 m i 5 m i ) = 67. 4 ∘ N o f E . \theta=tan^{-1}({\dfrac{12\ mi}{5\ mi}})=67.4^{\circ}\ N\ of\ E. θ = t a n − 1 ( 5 mi 12 mi ) = 67. 4 ∘ N o f E .
Comments