Question #244560

The rectangle shown in a Figure has sides parallel to the x and y axes. The position vectors of two

corners are A = 10.0 m at 50.0° and B = 12.0 m at 30.0°. (a) Find the perimeter of the rectangle. (b) Find the magnitude

and direction of the vector from the origin to the upper right corner of the rectangle.


1
Expert's answer
2021-10-03T13:25:02-0400

Find the x- and y-projection of A and B:


Ax=10cos50°,Ay=10sin50°.Bx=12cos30°,By=12sin30°. a=BxAx,b=AyBy.p=2(a+b)=2(BxAx+AyBy)=11.2 m.A_x=10\cos50°,\\ A_y=10\sin50°.\\ B_x=12\cos30°,\\ B_y=12\sin30°.\\\space\\ a=B_x-A_x,\\ b=A_y-B_y.\\ p=2(a+b)=2(B_x-A_x+A_y-B_y)=11.2\text{ m}.


The y-coordinate of the top right corner is Ay so, having x-coordinate equal to Bx, the magnitude of R:


R=Bx2+Ay2=12.9 m,θ=arctanAyBx=36°. R=12.936°.R=\sqrt{B_x^2+A_y^2}=12.9\text{ m},\\\theta=\arctan\frac{A_y}{B_x}=36°.\\\space\\ \vec R=12.9\angle36°.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS