Answer to Question #244559 in Physics for Asmar

Question #244559

Two vectors A and B have precisely equal magnitudes. In order for the magnitude of A + B to be one 

hundred times larger than the magnitude of A - B, what must be the angle between them?


1
Expert's answer
2021-10-02T14:56:10-0400

The magnitude of A+B:


"R_1=\\sqrt{(A+B\\cos\\theta)^2+(0+B\\sin\\theta)^2}=\\\\\n=\\sqrt{(A+B\\cos\\theta)^2+B^2\\sin^2\\theta}."

The Magnitude of A-B:


"R_2=\\sqrt{(A-B\\cos\\theta)^2+(0-B\\sin\\theta)^2}=\\\\\n=\\sqrt{(A-B\\cos\\theta)^2+B^2\\sin^2\\theta}."

The ratio:


"\\frac{R_1}{R_2}=100,\\\\\\space\\\\\n100=\\frac{\\sqrt{(A+B\\cos\\theta)^2+B^2\\sin^2\\theta}}{\\sqrt{(A-B\\cos\\theta)^2+B^2\\sin^2\\theta}},\\\\\\space\\\\\n10^4=\\frac{(A+B\\cos\\theta)^2+B^2\\sin^2\\theta}{(A-B\\cos\\theta)^2+B^2\\sin^2\\theta},\\\\\\space\\\\\n10^4=\\frac{A^2+B^2\\cos^2\\theta+2AB\\cos\\theta+B^2-B^2\\cos^2\\theta}{A^2+B^2\\cos^2\\theta-2AB\\cos\\theta+B^2-B^2\\cos^2\\theta},\\\\\\space\\\\\n10^4=\\frac{A^2+2AB\\cos\\theta+B^2}{A^2-2AB\\cos\\theta+B^2}."

Since A and B have "precisely equal magnitudes," then, putting A=B=V:


"10^4=\\frac{2V^2+2V^2\\cos\\theta}{2V^2-2V^2\\cos\\theta},\\\\\\space\\\\\n10^4-10^4\\cos\\theta=1+\\cos\\theta,\\\\\\space\\\\\n\\cos\\theta=\\frac{10^4-1}{10^4+1},\\\\\\space\\\\\n\\theta=\\arccos\\frac{10^4-1}{10^4+1}=1.15\u00b0."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS