Question #244255

A 32Okg wooden raft floats on a lake. When a 75kg man stands on the raft, it sinks 3.5cm deeper into the water. When he steps off, the raft oscillates for a while.


i. What is the frequency of oscillation? 


ii. What is the total energy of oscillation (ignoring damping)? 


1
Expert's answer
2021-09-29T17:49:59-0400

The additional buoyancy force when the man is standing:


Fa=ρgΔV=ρg(AΔx).F_a=\rho g\Delta V=\rho g(A\Delta x).

The angular frequency of oscillations can be expressed as


a=ω2Δx, ω=aΔx.a=\omega^2\Delta x,\\\space\\ \omega=\sqrt\frac a{\Delta x}.

The restoring force that appears when the man is standing is, according to Newton's second law:


Fr=Fa,Fr=Ma, a=FrM=FaM, ω=FaMΔx=ρgAΔxMΔx=ρgAM.F_r=F_a,\\ F_r=Ma,\\\space\\ a=\frac{F_r}{M}=\frac{F_a}{M},\\\space\\ \omega=\sqrt{\frac{F_a}{M\Delta x}}=\sqrt{\frac{\rho gA\Delta x}{M\Delta x}}=\sqrt{\frac{\rho gA}{M}}.

Find the area from the equilibrium of forces for the wood floating alone and with the man standing on it:


Mg=ρgAh,(M+m)g=ρgA(h+Δx),Mg=\rho gAh,\\ (M+m)g=\rho gA(h+\Delta x),

divide one by another:


Mg(M+m)gρgAΔx=1, ρgAΔx=mg, ρgA=mgΔx.\frac{Mg}{(M+m)g-\rho gA\Delta x}=1,\\\space\\ \rho gA\Delta x=mg,\\\space\\ \rho gA=\frac{mg}{\Delta x}.

Finally,


f=ω2π=12πρgAM=12πmgMΔx f=12π759.83200.035=1.29 Hz.f=\frac\omega{2\pi}=\frac{1}{2\pi}\sqrt{\frac{\rho gA}{M}}=\frac{1}{2\pi}\sqrt{\frac{mg}{M\Delta x}}\\\space\\ f=\frac{1}{2\pi}\sqrt{\frac{75·9.8}{320·0.035}}=1.29\text{ Hz}.

The total energy is


E=12Mv2=12M(ωΔx)2=12M(2πfΔx)2==12.9 J.E=\frac 12Mv^2=\frac12 M(\omega\Delta x)^2=\frac12 M(2\pi f\Delta x)^2=\\=12.9\text{ J}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS