1. The acceleration upward is
"a=1.25g=12.25\\text{ m\/s}^2." The distance the body can accelerate (h=0.6 m) will achieve reaching the upward speed of
"v=\\sqrt{2ah}=3.83\\text{ m\/s}." The height of jump is
"H=\\frac{v^2}{2g}=0.75\\text{ m}." We assume uniform acceleration of the jumper's body here.
2. The speed in m/s:
"v=170\u00b71000\/3600=47.22\\text{ m\/s}." The ball is
"y=2.5-0.91=1.59\\text{ m}" above the net.
The time of the flight to just cross the net:
"t_u=\\frac{v\\sin\\theta}{g}=7.82\\sin\\theta,\\\\\\space\\\\\nt_d=\\sqrt{\\frac{2((v\\sin\\theta)^2\/(2g)+y)}{g}},\\\\\\space\\\\\nT=t_u+t_d=\\frac{v\\sin\\theta}{g}+\\sqrt{\\frac{2[(v\\sin\\theta)^2\/(2g)+y]}{g}}." On the other hand, it is
"T=\\frac{R}{v\\cos\\theta}." Equate and solve for the angle:
"\\frac{R}{v\\cos\\theta}=\\frac{v\\sin\\theta}{g}+\\sqrt{\\frac{2[(v\\sin\\theta)^2\/(2g)+y]}{g}},\\\\\\space\\\\\n\\theta=24\u00b0." The ball will not hit the service box.
Comments
Leave a comment