Question #239802

A cart is travelling over an xy plane with acceleration components ax = 4.0 m/s^2 and ay=-2.0 m/s^2. if the initial velocity along x is 8.0 m/s and along y is 12 m/s. find, the displacement after 3.5 seconds


1
Expert's answer
2021-09-20T14:55:41-0400

Let's first find the xx- and yy-components of cart's displacement after 3.5 s:


dx=v0xt+12axt2,d_x=v_{0x}t+\dfrac{1}{2}a_xt^2,dy=v0yt+12ayt2,d_y=v_{0y}t+\dfrac{1}{2}a_yt^2,dx=8.0 ms3.5 s+124.0 ms2(3.5 s)2=52.5 m,d_x=8.0\ \dfrac{m}{s}\cdot3.5\ s+\dfrac{1}{2}\cdot4.0\ \dfrac{m}{s^2}\cdot(3.5\ s)^2=52.5\ m,dy=12 ms3.5 s+12(2.0 ms2)(3.5 s)2=29.75 m.d_y=12\ \dfrac{m}{s}\cdot3.5\ s+\dfrac{1}{2}\cdot(-2.0\ \dfrac{m}{s^2})\cdot(3.5\ s)^2=29.75\ m.

We can find the magnitude of the displacement of the cart from the Pythagorean theorem:


d=dx2+dy2=(52.5 m)2+(29.75 m)2=60.34 m.d=\sqrt{d_x^2+d_y^2}=\sqrt{(52.5\ m)^2+(29.75\ m)^2}=60.34\ m.

We can find the direction of the displacement of the cart from the geometry:


θ=tan1(dydx)=tan1(29.75 m52.5 m)=29.5.\theta=tan^{-1}(\dfrac{d_y}{d_x})=tan^{-1}(\dfrac{29.75\ m}{52.5\ m})=29.5^{\circ}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS