Question #234970
A football player kicks a ball into the air with an initial velocity of 30 m/s at an angle of 60 degree relative to the ground.

A.What is the position of the football after 1 second along the x and y axis?
INSERT YOUR ANSWER/SOLUTION HERE:








B.What is the velocity after 1 s?
INSERT YOUR ANSWER/SOLUTION HERE:








C.What is its total time of flight?
1
Expert's answer
2021-09-10T17:21:07-0400

(A) We can find the position of the football after 1 second along the x and y axis as follows:


x(t)=v0tcosθ,x(t)=v_0tcos\theta,x(t=1 s)=30 ms1 scos60=15 m.x(t=1\ s)=30\ \dfrac{m}{s}\cdot1\ s\cdot cos60^{\circ}=15\ m.y(t)=v0tsinθ12gt2,y(t)=v_0tsin\theta-\dfrac{1}{2}gt^2,y(t=1 s)=30 ms1 ssin60129.8 ms2(1 s)2=21.1 m.y(t=1\ s)=30\ \dfrac{m}{s}\cdot1\ s\cdot sin60^{\circ}-\dfrac{1}{2}\cdot9.8\ \dfrac{m}{s^2}\cdot(1\ s)^2=21.1\ m.

(B)

vx=v0cosθ=30 mscos60=15 ms,v_x=v_0cos\theta=30\ \dfrac{m}{s}\cdot cos60^{\circ}=15\ \dfrac{m}{s},vy=v0sinθgt,v_y=v_0sin\theta-gt,vy=30 mssin609.8 ms21 s=16.18 ms.v_y=30\ \dfrac{m}{s}\cdot sin60^{\circ}-9.8\ \dfrac{m}{s^2}\cdot1\ s=16.18\ \dfrac{m}{s}.

Finally, we can find the velocity after 1 s from the Pythagorean theorem:


v=vx2+vy2=(15 ms)2+(16.18 ms)2=22 ms.v=\sqrt{v_x^2+v_y^2}=\sqrt{(15\ \dfrac{m}{s})^2+(16.18\ \dfrac{m}{s})^2}=22\ \dfrac{m}{s}.

(C) Let's first find the time that the football takes to reach its maximum height:


vy=v0ygt,v_y=v_{0y}-gt,0=v0sinθgt,0=v_0sin\theta-gt,t=v0sinθg=30 mssin609.8 ms2=2.65 s.t=\dfrac{v_0sin\theta}{g}=\dfrac{30\ \dfrac{m}{s}\cdot sin60^{\circ}}{9.8\ \dfrac{m}{s^2}}=2.65\ s.

Finally, we can find the total time of flight of football:


tflight=2t=22.65 s=5.3 s.t_{flight}=2t=2\cdot2.65\ s=5.3\ s.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS