(A) We can find the position of the football after 1 second along the x and y axis as follows:
"x(t)=v_0tcos\\theta,""x(t=1\\ s)=30\\ \\dfrac{m}{s}\\cdot1\\ s\\cdot cos60^{\\circ}=15\\ m.""y(t)=v_0tsin\\theta-\\dfrac{1}{2}gt^2,""y(t=1\\ s)=30\\ \\dfrac{m}{s}\\cdot1\\ s\\cdot sin60^{\\circ}-\\dfrac{1}{2}\\cdot9.8\\ \\dfrac{m}{s^2}\\cdot(1\\ s)^2=21.1\\ m."(B)
"v_x=v_0cos\\theta=30\\ \\dfrac{m}{s}\\cdot cos60^{\\circ}=15\\ \\dfrac{m}{s},""v_y=v_0sin\\theta-gt,""v_y=30\\ \\dfrac{m}{s}\\cdot sin60^{\\circ}-9.8\\ \\dfrac{m}{s^2}\\cdot1\\ s=16.18\\ \\dfrac{m}{s}."Finally, we can find the velocity after 1 s from the Pythagorean theorem:
"v=\\sqrt{v_x^2+v_y^2}=\\sqrt{(15\\ \\dfrac{m}{s})^2+(16.18\\ \\dfrac{m}{s})^2}=22\\ \\dfrac{m}{s}."(C) Let's first find the time that the football takes to reach its maximum height:
"v_y=v_{0y}-gt,""0=v_0sin\\theta-gt,""t=\\dfrac{v_0sin\\theta}{g}=\\dfrac{30\\ \\dfrac{m}{s}\\cdot sin60^{\\circ}}{9.8\\ \\dfrac{m}{s^2}}=2.65\\ s."Finally, we can find the total time of flight of football:
"t_{flight}=2t=2\\cdot2.65\\ s=5.3\\ s."
Comments
Leave a comment