Question #234969
A ball rolls off the edge of a 2 m high table with an initial velocity of 10 m/s.

A.How far from the edge of the table will the ball land?








B. Determine the ball’s velocity just before it strikes the floor?
1
Expert's answer
2021-09-09T17:21:47-0400

A) Let's first find the time that the ball takes to reach the floor:


y=12gt2,y=\dfrac{1}{2}gt^2,t=2yg=22 m9.8 ms2=0.64 s.t=\sqrt{\dfrac{2y}{g}}=\sqrt{\dfrac{2\cdot2\ m}{9.8\ \dfrac{m}{s^2}}}=0.64\ s.

Finally, we can find the distance from the edge of the table to the point where the ball lands:


x=v0t=10 ms0.64 s=6.4 m.x=v_{0}t=10\ \dfrac{m}{s}\cdot0.64\ s=6.4\ m.

B) Let's first find final vertical velocity of the ball just before it strikes the floor:


vy=gt=9.8 ms20.64 s=6.27 ms.v_y=-gt=-9.8\ \dfrac{m}{s^2}\cdot0.64\ s=-6.27\ \dfrac{m}{s}.

Finally, we can find the ball’s velocity just before it strikes the floor from the Pythagorean theorem:


v=vx2+vy2=(10 ms)2+(6.27 ms)2=11.8 ms.v=\sqrt{v_x^2+v_y^2}=\sqrt{(10\ \dfrac{m}{s})^2+(-6.27\ \dfrac{m}{s})^2}=11.8\ \dfrac{m}{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS