Question #230694

A car starts from rest and accelerated uniformly for 5s until it attains a velocity of 3m-1. It then travels with uniform velocity for 15s before decelerates uniformly to rest in 10s

  1. Calculate the acceleration during the first 5 seconds and deceleration during the last 10 seconds
  2. Total distance covered through the motion
1
Expert's answer
2021-08-29T16:55:30-0400

1) Let's first calculate the acceleration of the car during the first 5 seconds:


v1=v01+a1t1,v_1=v_{01}+a_1t_1,a1=v1v01t1=3 ms05 s=0.6 ms2.a_1=\dfrac{v_1-v_{01}}{t_1}=\dfrac{3\ \dfrac{m}{s}-0}{5\ s}=0.6\ \dfrac{m}{s^2}.

Then, we can find the acceleration of the car during the last 10 seconds:


v3=v03+a3t3,v_3=v_{03}+a_3t_3,a3=v3v03t3=03 ms10 s=0.3 ms2.a_3=\dfrac{v_3-v_{03}}{t_3}=\dfrac{0-3\ \dfrac{m}{s}}{10\ s}=-0.3\ \dfrac{m}{s^2}.

The sign minus means that the car decelerates.

2) We can find the total distance covered as follows:


dtot=d1+d2+d3,d_{tot}=d_1+d_2+d_3,d1=v01t1+12a1t12=120.6 ms2(5 s)2=7.5 m,d_1=v_{01}t_1+\dfrac{1}{2}a_1t_1^2=\dfrac{1}{2}\cdot0.6\ \dfrac{m}{s^2}\cdot(5\ s)^2=7.5\ m,d2=v02t2+12a2t22=3 ms15 s=45 m,d_2=v_{02}t_2+\dfrac{1}{2}a_2t_2^2=3\ \dfrac{m}{s}\cdot15\ s=45\ m,d3=v03t3+12a3t32=3 ms10 s+12(0.3 ms2)(10 s)2=15 m,d_3=v_{03}t_3+\dfrac{1}{2}a_3t_3^2=3\ \dfrac{m}{s}\cdot10\ s+\dfrac{1}{2}\cdot(-0.3\ \dfrac{m}{s^2})\cdot(10\ s)^2=15\ m,dtot=7.5 m+45 m+15 m=67.5 m.d_{tot}=7.5\ m+45\ m+15\ m=67.5\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS