Given:
"v_{0x}=v_0\\cos\\theta=1200\\cos\\theta \\;{\\rm ft\/s}\\\\\nv_{0y}=v_0\\sin\\theta=1200\\sin\\theta \\;{\\rm ft\/s}\\\\\nu=60\\:{\\rm mph}=88{\\:\\rm ft\/s}\\\\\nL=30\\:000\\:\\rm ft"
In the reference frame with respect to the movement target, the range of a bullet is given by
"L=(v_{0x}-u)t"The time of motion
"t=\\frac{2v_{0y}}{g}"So, we get
"L=(1200\\cos\\theta-88)*\\frac{2*1200\\sin\\theta}{32}=30000""(1200\\cos\\theta-88)\\sin\\theta=400"
The roots of this equation
"\\cos\\theta_1=0.919,\\quad \\cos\\theta_2=0.446"Finally
"\\theta_1=23^{\\circ},\\quad\\theta_2=64^{\\circ}"
Comments
Leave a comment