Given:
v 0 = 600 m / s v_0=600\:\rm m/s v 0 = 600 m/s
θ = 3 0 ∘ \theta=30^{\circ} θ = 3 0 ∘
t 1 = 40 s t_1=40\:\rm s t 1 = 40 s
The range
R = v 0 2 sin 2 θ g = 60 0 2 sin 6 0 ∘ 9.8 = 31813 m R=\frac{v_0^2\sin2\theta}{g}=\frac{600^2\sin 60^{\circ}}{9.8}=31813\:\rm m R = g v 0 2 s i n 2 θ = 9.8 60 0 2 s i n 6 0 ∘ = 31813 m The time of motion
t = 2 v 0 sin θ g = 2 ∗ 600 sin 3 0 ∘ 9.8 = 61 s t=\frac{2v_0\sin\theta}{g}=\frac{2*600\sin 30^{\circ}}{9.8}=61\:\rm s t = g 2 v 0 s i n θ = 9.8 2 ∗ 600 s i n 3 0 ∘ = 61 s After 40 s
x = v 0 cos θ ∗ t 1 = 600 cos 3 0 ∘ ∗ 40 = 20784 m x=v_0\cos\theta *t_1=600\cos 30^{\circ}*40=20784\:\rm m x = v 0 cos θ ∗ t 1 = 600 cos 3 0 ∘ ∗ 40 = 20784 m
y = v 0 sin θ ∗ t 1 − g t 1 2 2 y=v_0\sin\theta *t_1-\frac{gt_1^2}{2} y = v 0 sin θ ∗ t 1 − 2 g t 1 2
y = 600 sin 3 0 ∘ ∗ 40 − 9.8 ∗ 4 0 2 2 = 4160 m y=600\sin 30^{\circ}*40-\frac{9.8*40^2}{2}=4160\:\rm m y = 600 sin 3 0 ∘ ∗ 40 − 2 9.8 ∗ 4 0 2 = 4160 m The speed of a bullet
v = ( v 0 cos θ ) 2 + ( v 0 sin θ − g t 1 ) v=\sqrt{(v_0\cos\theta)^2+(v_0\sin\theta-gt_1)} v = ( v 0 cos θ ) 2 + ( v 0 sin θ − g t 1 )
v = ( 600 cos 3 0 ∘ ) 2 + ( 600 sin 3 0 ∘ − 9.8 ∗ 40 ) 2 = 528 m / s v=\sqrt{(600\cos 30^{\circ})^2+(600\sin30^{\circ}-9.8*40)^2}\\=528\:\rm m/s v = ( 600 cos 3 0 ∘ ) 2 + ( 600 sin 3 0 ∘ − 9.8 ∗ 40 ) 2 = 528 m/s
Comments
Leave a comment