A bullet is fired at an angle of 30° above the horizontal with a velocity of 600m/s. Find the range the time it returns to the same level and the position and velocity of the bullet 40 s after after it is fired
Given:
"v_0=600\\:\\rm m\/s"
"\\theta=30^{\\circ}"
"t_1=40\\:\\rm s"
The range
"R=\\frac{v_0^2\\sin2\\theta}{g}=\\frac{600^2\\sin 60^{\\circ}}{9.8}=31813\\:\\rm m"The time of motion
"t=\\frac{2v_0\\sin\\theta}{g}=\\frac{2*600\\sin 30^{\\circ}}{9.8}=61\\:\\rm s"After 40 s
"x=v_0\\cos\\theta *t_1=600\\cos 30^{\\circ}*40=20784\\:\\rm m""y=v_0\\sin\\theta *t_1-\\frac{gt_1^2}{2}"
"y=600\\sin 30^{\\circ}*40-\\frac{9.8*40^2}{2}=4160\\:\\rm m"
The speed of a bullet
"v=\\sqrt{(v_0\\cos\\theta)^2+(v_0\\sin\\theta-gt_1)}""v=\\sqrt{(600\\cos 30^{\\circ})^2+(600\\sin30^{\\circ}-9.8*40)^2}\\\\=528\\:\\rm m\/s"
Comments
Leave a comment