The resultant force
R = F 1 + F 2 + F 3 + F 4 \bf R=F_1+F_2+F_3+F_4 R = F 1 + F 2 + F 3 + F 4 Let F 1 \bf F_1 F 1 is directed toward positive x-axis. Then
R x = F 1 + F 2 cos 6 0 ∘ + F 3 cos 16 0 ∘ + F 4 cos 24 0 ∘ R y = F 2 sin 6 0 ∘ + F 3 sin 16 0 ∘ + F 4 sin 24 0 ∘ R_x=F_1+F_2\cos 60^{\circ}+F_3\cos 160^{\circ}+F_4\cos 240^{\circ}\\
R_y=F_2\sin 60^{\circ}+F_3\sin 160^{\circ}+F_4\sin 240^{\circ} R x = F 1 + F 2 cos 6 0 ∘ + F 3 cos 16 0 ∘ + F 4 cos 24 0 ∘ R y = F 2 sin 6 0 ∘ + F 3 sin 16 0 ∘ + F 4 sin 24 0 ∘
R x = 5.0 + 7.0 cos 6 0 ∘ + 3.0 cos 16 0 ∘ + 10 cos 24 0 ∘ R y = 7.0 sin 6 0 ∘ + 3.0 sin 16 0 ∘ + 10 sin 24 0 ∘ R_x=5.0+7.0\cos 60^{\circ}+3.0\cos 160^{\circ}+10\cos 240^{\circ}\\
R_y=7.0\sin 60^{\circ}+3.0\sin 160^{\circ}+10\sin 240^{\circ} R x = 5.0 + 7.0 cos 6 0 ∘ + 3.0 cos 16 0 ∘ + 10 cos 24 0 ∘ R y = 7.0 sin 6 0 ∘ + 3.0 sin 16 0 ∘ + 10 sin 24 0 ∘
R x = 0.68 N R y = − 1.6 N R_x=0.68{\:\rm N}\\
R_y=-1.6\:\rm N R x = 0.68 N R y = − 1.6 N The magnitude of resultant force
R = R x 2 + R y 2 = 0.6 8 2 + ( − 1.6 ) 2 = 1.7 N R=\sqrt{R_x^2+R_y^2}=\sqrt{0.68^2+(-1.6)^2}=1.7\:\rm N R = R x 2 + R y 2 = 0.6 8 2 + ( − 1.6 ) 2 = 1.7 N The direction of resultant force
θ = tan − 1 R y R x = tan − 1 − 1.6 0.68 = − 6 7 ∘ \theta=\tan^{-1}\frac{R_y}{R_x}=\tan^{-1}\frac{-1.6}{0.68}=-67^{\circ} θ = tan − 1 R x R y = tan − 1 0.68 − 1.6 = − 6 7 ∘
Comments