The resultant force
"\\bf R=F_1+F_2+F_3+F_4"Let "\\bf F_1" is directed toward positive x-axis. Then
"R_x=F_1+F_2\\cos 60^{\\circ}+F_3\\cos 160^{\\circ}+F_4\\cos 240^{\\circ}\\\\\nR_y=F_2\\sin 60^{\\circ}+F_3\\sin 160^{\\circ}+F_4\\sin 240^{\\circ}""R_x=5.0+7.0\\cos 60^{\\circ}+3.0\\cos 160^{\\circ}+10\\cos 240^{\\circ}\\\\\nR_y=7.0\\sin 60^{\\circ}+3.0\\sin 160^{\\circ}+10\\sin 240^{\\circ}"
"R_x=0.68{\\:\\rm N}\\\\\nR_y=-1.6\\:\\rm N"
The magnitude of resultant force
"R=\\sqrt{R_x^2+R_y^2}=\\sqrt{0.68^2+(-1.6)^2}=1.7\\:\\rm N"The direction of resultant force
"\\theta=\\tan^{-1}\\frac{R_y}{R_x}=\\tan^{-1}\\frac{-1.6}{0.68}=-67^{\\circ}"
Comments
Leave a comment