Q3. A mass of 5kg is hung from a tension spring causing an increase in the length of the spring by 18mm. Calculate the following:
a) The period of the vibration.
b) The frequency of the vibration.
c) Determine the maximum velocity and maximum acceleration of the mass when it is pulled down a further 15 mm.
d) If a 15 kg machine is suspended from this spring and the machine exerts an out-of-balance force of 10 N at 5 Hz. Determine the amplitude of the steady state vibration.
a)
"mg=kx\\to k=mg\/x=5\\cdot9.81\/0.018=2725\\ (N\/m)"
"T=2\\pi\\sqrt{m\/k}=2\\cdot3.14\\cdot\\sqrt{5\/2725}=0.269\\ (s)"
b)
"f=1\/T=1\/0.269=3.72\\ (Hz)"
c)
"v_{max}=A\\omega=A\\cdot2\\pi f=0.015\\cdot2\\cdot3.14\\cdot3.72=0.35\\ (m\/s)"
"a_{max}=A\\omega^2=A\\cdot(2\\pi f)^2=0.015\\cdot(2\\cdot3.14\\cdot3.72)^2=8.2\\ (m\/s^2)"
d)
"A=\\frac{F}{m\\cdot\\sqrt{(\\omega^2_0-\\omega^2)^2}}=\\frac{F}{m\\cdot\\sqrt{((2\\pi f_0)^2-(2\\pi f)^2)^2}}=\\frac{10}{15\\cdot\\sqrt{({(2\\cdot3.14\\cdot 3.72)^2-(2\\cdot3.14\\cdot5)^2})^2}}=0.0015\\ (m)"
Comments
Leave a comment